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Abstract

This work introduces a tempo- and time-signature–responsive real-time EEG

processing system built on OpenBCI hardware, Node.js networking, and browser-

based JavaScript analysis. The system acquires 8-channel EEG via the ADS1299

front-end, which is a high-resolution biopotential amplifier, performs digital filtering

in the OpenBCI GUI, streams data over UDP to a WebSocket server, and computes

spectral features through a tempo-adaptive windowing mechanism whose duration

is dynamically derived from musical tempo and meter. A circular buffer ensures

continuous sample flow, and sliding-window DFT enables high-resolution spectral

tracking. The system achieves stable end-to-end latency of approximately 6–11 ms,

maintains synchronized EEG–music alignment across tempo changes, and generates

interpretable delta, theta, alpha, beta, and gamma band trajectories for real-time

visualization. By coupling EEG analysis windows directly to musical tempo and

time signature, this framework provides a novel foundation for real-time multimodal

corpus creation and opens new possibilities for studying neural entrainment, musical

structure perception, and interactive performance systems.
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1 Basics of Digital Signal Processing

Building on the challenges outlined in the first section, this part introduces tempo- and

time-signature–responsive EEG windows as a proposed contribution toward solving Prob-

lem 11. This approach integrates harmonic and musical analysis with insights from music

and health sciences, enabling a real-time tool that adapts dynamically to musical structure

and physiological responses.

The basic concepts of Digital Signal Processing (DSP) form the foundation for understand-

ing modern biosignal acquisition. A signal is a representation of how a physical quantity

varies over time or space. Examples include electrical brain activity measured through

EEG as a function of time, air-pressure fluctuations corresponding to sound waves, and

light intensity distributed across a two-dimensional array in an image. Signals underlie all

information-transmission and processing systems, serving as carriers of data from sensors,

biological systems, communication channels, and countless other sources.

Extending these fundamental principles, the following section examines in greater detail

how signals are processed, transformed, and interpreted within the context of real-time

multimodal analysis.

1This section constitutes the second chapter of my ongoing master’s thesis and builds upon the findings
presented in the first chapter. That earlier section concluded that recent interdisciplinary music- and
health-science research faces two major, interrelated challenges.

First, music-and-memory studies rarely incorporate detailed harmonic or structural musical anal-
ysis. This limitation stems from a second, deeper problem in both Music Information Re-
trieval (MIR) and music theory: current technologies used in music-and-memory research rely al-
most entirely on expert-annotated datasets and lack integrated, real-time systems capable of auto-
matically tokenizing musical structure while simultaneously synchronizing it with behavioral, neu-
ral, and physiological multimodal measurements. (Details of the first chapter can be found at:
https://oguzhantugral.com/research/musicTheory/dataAnalysisMusicHealth.html.)

Accordingly, while the present work aims to contribute to a potential solution for Problem 1, the
sample project Real-Time Roman Numeral Analysis from Live MIDI Performance Using a Distributed
Multimodal Architecture represents a contribution toward solving Problem 2.
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1.1 Shannon–Weaver Communication Model

Before introducing the fundamental operations of signal processing, it is instructive to

recall the Shannon–Weaver communication model, which provides a conceptual framework

for understanding how information is generated, transmitted, distorted by noise, and

recovered. This model highlights the entire lifecycle of a signal—from its origin at the

information source to its final interpretation at the destination—and thereby connects

directly to the motivation behind signal processing itself.

Figure 1: Shannon–Weaver communication model.

From a signal processing perspective, Fig. 1 emphasizes two critical observations. First,

the information source generates the physical signal—such as brain activity, sound waves

from an instrument, or visual patterns—that symbolize the information to be conveyed.

Second, as the signal propagates through the channel, it becomes distorted through at-

tenuation and the addition of noise. Signal processing emerges precisely as the mathe-

matical and algorithmic framework designed to analyze such corrupted signals, extract

the underlying information, and synthesize new signals for reliable communication and

computation. Thus, the two key concepts—analysis and synthesis—must be introduced

to clarify their roles within the broader context of signal processing.

1.2 Analysis and Synthesis

Signal processing encompasses two fundamental operations. The first is analysis, which

involves understanding or extracting information from signals, including their features,
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structure, and underlying patterns. Examples include analyzing EEG signals to detect

neural rhythms, extracting spectral content from sound waves, or identifying edges in

images. The second operation is synthesis, which involves generating signals that convey

intended information, such as producing speech waveforms, musical tones, or control sig-

nals. Together, these operations form the foundation of modern communication, sensing,

and computational systems.

Analog models describe signals as continuous functions of time or space, representing

physical quantities that vary smoothly without discrete steps. In contrast, digital models

represent signals as sequences of discrete numerical values that approximate the continu-

ous waveform. This representation enables efficient storage, processing, and transmission

using unified algorithms across digital hardware and software systems. The transition

from analog to digital fundamentally transforms how signals can be manipulated: digital

signals are built upon two ingredients—discrete time (sampling) and discrete amplitude

(quantization).

1.2.1 Sampling

Sampling converts a continuous-time signal into a discrete sequence by measuring its value

at uniformly spaced time instants:

x[n] := x(nTs), n ∈ Z.

Here, Ts is the sampling period and fs = 1/Ts is the sampling rate in samples per second.

For example, if Ts = 0.004 s, then fs = 250Hz, and the system acquires 250 discrete

samples per second. Each discrete value x[n] represents the amplitude of the continuous-

time signal at the instant t = nTs. In other words, while n is a discrete index of the

digitized signal (analogous to an array index), its multiplication with the sampling period

gives the corresponding time value in the original analog signal. This relationship forms

the essential link between continuous-time and discrete-time representations.

Having established the basic mechanism that maps continuous-time signals to their discrete-
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time counterparts, we now turn to the fundamental principle that determines the con-

ditions under which this conversion preserves all the information in the original signal.

This provides the proper representation of the signal in the time domain, and before ex-

amining how quantization introduces additional distortions, it is helpful to consider how

the sampling theorem directly influences the design and operation of EEG acquisition

hardware.

For EEG applications, neural signals contain meaningful information primarily below

100Hz, although high-frequency muscle artifacts and environmental noise can extend

well beyond this range. The OpenBCI Cyton system samples at fs = 250Hz, which sat-

isfies the Nyquist criterion for signals bandlimited to 125Hz. To ensure that frequency

components above this limit do not cause aliasing, the ADS1299 analog front-end incor-

porates a hardware anti-aliasing filter before digitization, typically with a cutoff frequency

near fs/2 ≈ 125Hz. This filter attenuates high-frequency content that would otherwise

violate the sampling theorem, ensuring that the discrete samples faithfully represent the

underlying EEG signal.

1.2.2 Quantization

The second step of digitization, quantization, maps each sample to one of L allowable am-

plitude levels, producing integer-valued data x̂[n]. Whereas continuous amplitudes may

take any real value, quantization restricts each sample to a finite set of levels, enabling dig-

ital storage and computation. Together, sampling and quantization transform an analog

signal into a digital sequence.

While the sampling theorem explains how a clean, bandlimited signal can be captured

without loss of information, real-world communication systems rarely operate under ideal,

noise-free conditions. In the Shannon–Weaver communication model, noise enters the

channel as an additive disturbance,

y(t) = x(t) + w(t),
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where y(t) is the measured signal formed by combining the clean signal x(t) with random

noise w(t) arising from thermal effects, interference, and other disturbances. Such noise

reduces the achievable data rate and the reliability of communication, and its influence

differs substantially between analog and digital transmission systems.

In analog communication, noise accumulates continuously as the signal propagates through

the channel. Each amplifier or repeater passes forward a slightly more corrupted version

of the waveform, and no mechanism exists to restore the signal perfectly. By contrast,

digital communication introduces a decision stage at every repeater: received symbols

are compared against thresholds, and the nearest ideal symbol is regenerated. Because

the digital repeater outputs clean, quantized symbols, noise does not accumulate indef-

initely; instead, it is periodically removed at each decision point. However, because the

present work focuses on the mechanisms underlying software for generating and process-

ing multimodal data—including EEG measurements—it is more appropriate to consider

modern biosignal acquisition systems rather than classical communication channels, where

repeaters and symbol decisions play a central role.

Devices such as the OpenBCI Cyton board follow a fundamentally different architecture:

rather than transmitting symbols over a noisy communication channel that would require

digital regeneration, they condition the analog EEG signal locally—using differential am-

plification, analog filtering, and gain control—and then convert it directly into digital

samples for short-range digital transmission. For example, each EEG channel measures

the voltage difference between an active scalp electrode and a reference electrode, ampli-

fies and filters this microvolt-level signal, and digitizes it before sending it wirelessly to a

computer. Once digitized, these samples are transmitted as discrete integer packets rather

than as analog waveforms. Thus, unlike classical analog chains, there is no progressive

accumulation of noise during transmission: all critical noise-sensitive operations occur

before digitization, and all subsequent communication is effectively noise-free except for

occasional packet loss.

Consequently, the notion of a “channel” in the Shannon–Weaver sense plays a reduced role
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in such systems. For biosignal acquisition hardware, the primary challenge lies in ensur-

ing low-noise analog conditioning prior to sampling, not in symbol regeneration during

transmission. For this reason, the following section focus on the internal signal-processing

pipeline of the acquisition device itself, with emphasis on amplification, filtering, sampling,

and quantization in the ADS1299-based OpenBCI Cyton system.
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2 EEG Signal Processing: Hardware, Software, and

Data Transfer

Within the present software framework developed in this work, multimodal synchronized

data are generated by integrating EEG-derived features that are mapped to musical rep-

resentations—such as automatically detected Roman numeral harmonic analyses—as well

as behavioral markers including facial-expression tracking, go/no-go performance metrics,

and estimates of valence and emotion. The EEG signals are acquired using an OpenBCI

Cyton device. Accordingly, this section provides a technical overview of the Cyton 8-

channel EEG data acquisition and processing pipeline, which converts cortical potentials

into digital data through three principal stages: (1) hardware acquisition via the ADS1299

analog front-end, (2) digital processing in the OpenBCI GUI, and (3) network transmis-

sion via the UDP protocol. The OpenBCI Cyton 8-channel EEG system thus provides a

complete pathway from tiny scalp voltages to real-time digital data that can be consumed

by other software modules.

When neurons fire, they generate electrical signals on the order of 20–100 V— around

10,000 times weaker than a 1.5 V AA battery—so the first challenge is simply detecting

them. In the hardware stage, electrodes pick up these faint potentials, and the ADS1299

chip on the Cyton board differentially measures, amplifies, filters, and converts them into

high-resolution digital codes. In the software stage, the OpenBCI GUI converts these

codes back into voltage values, applies standard digital signal processing (such as band-

pass and notch filtering), and exposes both raw and filtered data streams for inspection

and analysis. In the network stage, the GUI uses low-latency UDP streaming to send

multi-channel EEG data in JSON format to environments like Python, MaxMSP, or

JavaScript, enabling real-time neurofeedback, interaction, and multimodal performance.

The following sections explain each of these stages in detail, linking hardware behavior,

DSP fundamentals, and network streaming.
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2.1 Hardware Acquisition (ADS1299)

The Cyton board uses a specialized chip called the ADS1299, manufactured by Texas

Instruments. This chip is specifically designed for biological signals and provides eight

input channels for simultaneous multi-site measurement, a 24-bit analog-to-digital con-

verter (ADC) for high-resolution digitization, programmable-gain amplifiers for boosting

weak signals, and built-in filtering stages for reducing noise. The complete acquisition

process implemented by the ADS1299 can be understood as a sequence of seven stages.

Figure 2: openBCI Hardware Acquisition

The signal acquisition chain begins with differential amplification, in which the system

measures the potential difference between the active and reference electrodes rather than

the absolute potential at either site. The differential input voltage is defined as

V (t) = ϕactive(t)− ϕREF(t),

a formulation that effectively suppresses noise components that appear identically on both
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electrodes. This noise rejection is governed by the ADS1299 front end, whose common-

mode rejection ratio (CMRR) exceeds 110 dB, corresponding to a linear attenuation factor

of approximately 3× 105.

Following differential amplification, the signal is scaled by the programmable gain ampli-

fier,

Vamp(t) = GV (t),

which increases the microvolt-level EEG fluctuations to a range suitable for digitization.

Before conversion to the digital domain, an analog anti-aliasing filter attenuates spectral

components above the Nyquist limit. The filtered signal is expressed as

xA(t) = hA(t) ∗ Vamp(t),

where hA(t) denotes the filter’s impulse response.

The conditioned analog signal is then uniformly sampled with period Ts = 0.004 s, corre-

sponding to fs = 250Hz. The resulting discrete-time sequence is

Vamp[n] = Vamp(nTs).

Each sample is quantized by the 24-bit ADC using two’s complement encoding. The

quantized output is

x̂[n] = ∆ round

(
Vamp[n]

∆

)
,

where ∆ denotes the quantization step size. For the ADS1299, this step size is

∆LSB =
2Vref

G 224
≈ 0.02235µV,

yielding a maximum quantization error of ±∆/2 ≈ 0.011µV.

Page 11



Oğuzhan Tuğral EEG Processing Architecture

Finally, the ADC outputs the corresponding signed integer code,

N =
Vamp[n]

∆LSB

,

which is transmitted to the host computer as the raw time-series data. In summary, the

hardware pipeline—differential amplification, gain scaling, analog filtering, sampling, and

quantization—transforms extremely weak biopotential signals into precise digital mea-

surements suitable for downstream software processing.

2.2 OpenBCI GUI Digital Signal Processing

Having established how the hardware conditions, amplifies, and digitizes the EEG signal,

we now transition to the software domain. In particular, the OpenBCI GUI (Graphical

User Interface) represents the first stage of software-based signal interpretation. After

the Cyton board transmits the integer-encoded data packets, the GUI performs two es-

sential operations. First, it converts these integer codes back into meaningful voltage

values expressed in microvolts, reestablishing the physical interpretation of the recorded

EEG. Second, it applies digital filters that remove noise and enhance the clarity of the

reconstructed signal. Together, these operations ensure that the incoming data stream is

both interpretable and ready for visualization or higher-level analysis. Figure 3 illustrates

the full signal acquisition flow from hardware to software.
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Figure 3: Digital signal reconstruction and filtering pipeline in the OpenBCI GUI.

As the data transitions from raw numerical form toward physiologically meaningful units,

the first computational step involves restoring the original microvolt-scale signal ampli-

tude.

2.2.1 Inverse Scaling to Microvolts

At this stage, the OpenBCI GUI reverses the hardware-side scaling by converting the

incoming digital code back into a voltage expressed in microvolts. Since the ADS1299

first amplified the signal by the gain factor G and then quantized it into an integer code

N , the GUI reconstructs the voltage using

x̂[n] =
N ·∆LSB

G
,
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where N is the transmitted digital code, ∆LSB is the quantization step size (approximately

0.02235µV), and G is the gain applied during amplification (typically 24). We divide

by G because the hardware originally multiplied the signal by this factor; undoing this

operation restores the voltage to its true physiological scale. This reconstructed signal,

known as timeSeriesRaw in the GUI, corresponds to the unfiltered EEG trace displayed

in microvolts.

Once the signal has been accurately reconstructed in the voltage domain, the next logical

step is to remove unwanted frequency components that could obscure meaningful neural

activity.

2.2.2 Digital Filtering

In this phase, the OpenBCI GUI applies digital filters to suppress noise and isolate the

relevant components of the EEG. The filtered value at sample index n is given by

xfilt[n] =
∞∑

k=−∞

hD[k] · x̂[n− k],

where hD[k] represents the digital filter coefficients and x̂[n− k] denotes earlier samples

of the reconstructed signal. Conceptually, the filter outputs each sample as a weighted

combination of multiple past inputs, allowing desired frequencies to pass while attenuating

sources of interference.

With the filtering mechanism defined, we now turn to the specific types of filters most

commonly employed in the OpenBCI GUI.

2.2.3 Common Filters Used in OpenBCI GUI

Digital filtering is central to maintaining clarity in EEG recordings, and the OpenBCI

GUI implements several standard filter types to achieve this goal. Two of the most critical

are the band-pass filter, which isolates the EEG-relevant frequency band, and the notch

filter, which suppresses power line interference.
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Band-Pass Filter

The band-pass filter preserves frequencies relevant for EEG interpretation, typically be-

tween 1 and 50 Hz. This removes slow drifts (near 0 Hz) caused by electrode motion or

thermal variation, and suppresses high-frequency components above 50 Hz generated by

muscle activity or environmental electronics. The 1 Hz high-pass portion also acts as a

DC blocking filter, removing constant voltage offsets accumulated during acquisition. In

the OpenBCI GUI, the default configuration is a 1–50 Hz band-pass implemented using

an Infinite Impulse Response (IIR) architecture, providing steep roll-off characteristics

with minimal computational cost.

Notch Filter

A notch filter selectively attenuates power line interference at either 60 Hz (North Amer-

ica) or 50 Hz (Europe/Asia). This noise source is narrowband and strong, making it a

frequent contaminant even under ideal electrode conditions. The notch filter removes this

interference while preserving adjacent neural frequencies. The GUI implements it using

an IIR structure with a quality factor Q ≈ 30, producing a rejection bandwidth of about

2Hz around the line frequency.

After filtering removes major noise sources, the GUI can extract simple statistical features

that help evaluate channel quality and signal behavior in real time.

2.2.4 Basic Signal Statistics

Real-time EEG assessment often begins with basic statistical measures that reveal overall

signal stability and channel behavior. Metrics such as the mean and variance provide

quick insight into baseline drift, electrode contact quality, and neural activity. Evaluating

these parameters ensures that the data is suitable for more advanced processing.
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Channel Mean (DC Offset)

A fundamental indicator of signal quality is the mean voltage of each channel, computed

as

x̄i =
1

N

N−1∑
n=0

xi[n],

where xi[n] is the n-th sample of channel i and N is the evaluation window size. This mean

value, or DC offset, quantifies how far the baseline deviates from zero. The ADS1299 does

not remove DC internally, so any electrode-based offset is digitized alongside the neural

signal. When the 1Hz high-pass portion of the GUI’s band-pass filter is applied, this

DC component is effectively suppressed in the timeSeriesFilt output. Large offsets in

timeSeriesRaw may indicate poor electrode contact, drying gel, or hardware instability.

Beyond the mean, understanding how much the signal fluctuates around this baseline

provides further insight into neural activity and noise levels.

Channel Variance

Channel variance measures the degree of fluctuation in the EEG signal around its mean

and is defined in real-time contexts using the population variance:

σ2
i =

1

N

N−1∑
n=0

(xi[n]− x̄i)
2 .

Although the sample variance (with denominator N − 1) is unbiased for statistical infer-

ence, the population variance is preferred in streaming applications due to its stability

and computational consistency. Squaring the deviations ensures that both positive and

negative fluctuations contribute equally to the overall measurement. A high variance may

indicate strong neural activity, increased noise, or transient artifacts, making it a valuable

parameter for assessing channel reliability.

2.2.5 timeSeriesRaw vs. timeSeriesFilt

The OpenBCI GUI provides access to two representations of the EEG data: timeSeriesRaw

and timeSeriesFilt. The timeSeriesRaw signal, denoted by x̂[n], is the reconstructed
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voltage obtained directly from the ADC without any filtering. It contains all frequency

components—including noise—and is useful for diagnosing hardware issues or inspecting

exactly what the ADC captured. In contrast, timeSeriesFilt, represented by xfilt[n], is

the version of the signal that has passed through digital band-pass and notch filters.

By default, timeSeriesFilt includes the following digital processing stages:

1. 1–50 Hz band-pass filter: Removes DC drift and slow baseline fluctuations below

1Hz, as well as high-frequency noise and muscle artifacts above 50Hz.

2. 60 Hz notch filter (North America) or 50 Hz notch filter (Europe/Asia): Attenuates

power line interference.

Both filters are implemented as Infinite Impulse Response (IIR) structures within the GUI,

providing computationally efficient real-time processing with minimal phase distortion.

This filtered signal is cleaner, easier to interpret, and generally preferred for analysis and

visualization.

Having reconstructed, filtered, and statistically characterized the EEG signal within the

OpenBCI GUI, the processing pipeline now shifts from local computation to real-time data

distribution. At this stage, the central objective is no longer signal transformation but

the efficient transmission of these processed samples to external software environments.

Consequently, the next step focuses on how the system streams continuous EEG data

across the network in a reliable and low-latency manner.
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2.3 UDP Network Streaming

Up to this point, the Cyton hardware and the OpenBCI GUI have collaboratively trans-

formed raw EEG potentials into a cleaned, scaled, and digitally reconstructed signal

suitable for software-level analysis. Having completed the essential steps of amplifica-

tion, digitization, filtering, and statistical evaluation, the processing pipeline now shifts

from local computation to the distribution of data across external systems. In this final

stage of the acquisition chain, the objective is to stream the processed EEG samples to

real-time clients with minimal delay. Efficient EEG streaming requires a network proto-

col capable of supporting continuous, low-latency transmission, particularly in scenarios

where multiple software environments depend simultaneously on the same data stream.

Figure 4 illustrates the complete transmission pathway linking the OpenBCI hardware

and software to the target application in which further processing is performed.

Figure 4: UDP Flow Chart

As the signal moves beyond local reconstruction and filtering, the OpenBCI system must

ensure that the chosen communication protocol, output stream organization, and packet

structure together support robust and timely data delivery. The following sections explain

why the OpenBCI GUI employs UDP rather than TCP, how it enables simultaneous
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multi-port streaming, and how multi-channel EEG samples are encapsulated within each

transmitted JSON packet.

2.3.1 UDP-Based Multi-Port and Multi-Channel EEG Streaming

Real-time EEG streaming from the OpenBCI GUI requires a protocol capable of deliv-

ering continuous data with minimal delay. Although the Transmission Control Protocol

(TCP) guarantees ordered delivery and error correction, it introduces notable latency due

to connection overhead, congestion control, and retransmission delays. TCP also relies

on a handshake procedure—an initialization step required to establish a reliable connec-

tion—which further increases delay.

In contrast, the User Datagram Protocol (UDP) transmits packets without establishing a

connection, avoids handshake operations entirely—which are the setup exchanges required

by TCP (i.e., the small initial messages sent before data transfer begins)—and achieves

typical latencies of 1–5ms, compared with TCP’s 10–100 ms range. Because EEG data

tolerate occasional packet loss—each packet containing only 40–50 ms of recorded activity

(approximately 10–12 samples at 250Hz)—brief interruptions affect only narrow time

windows and are acceptable in real-time applications where responsiveness is prioritized

over perfect reliability. For these reasons, UDP is the preferred protocol for smooth,

low-latency EEG streaming.

The OpenBCI GUI also provides a multi-port streaming architecture, enabling up to

three independent UDP streams to operate simultaneously. Each stream can target a

different IP address and port, making it possible to send raw EEG data to Python,

spectral features to Max/MSP, and band-power values to a browser-based interface, all

in parallel and without significant delay.

Each UDP packet is formatted in JSON and contains a timestamp accompanied by an

array of eight EEG channel samples. A typical packet structure appears as follows:

{

"type": "eeg",
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"data": [

[ch1_sample1, ch2_sample1, ..., ch8_sample1],

[ch1_sample2, ch2_sample2, ..., ch8_sample2],

...

[ch1_sampleN, ch2_sampleN, ..., ch8_sampleN]

],

"timestamp": 1234567890

}

Conceptually, the incoming data form an 8×N matrix:

X =



x1[0] x1[1] · · · x1[N − 1]

x2[0] x2[1] · · · x2[N − 1]

...
... . . . ...

x8[0] x8[1] · · · x8[N − 1]


,

where each xi[n] denotes the microvolt-level EEG voltage at channel i and sample index

n.

2.3.2 Network Packet Handling in Real-Time EEG Streaming

After the data have been transmitted, the receiving application must validate, decode,

and integrate each UDP packet into its processing pipeline with minimal overhead. The

receiver first checks whether the incoming payload contains valid JSON:

P (packet) =


parse(packet) if valid JSON,

reject otherwise,

ensuring that malformed packets do not propagate through downstream computations.

Following validation, the application extracts the numerical arrays, converts string values

to floating-point numbers when necessary, and stores them in buffers for real-time analysis.

Because UDP does not guarantee delivery, detecting packet loss is essential. This is
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typically performed by comparing incoming sequence numbers to those expected. The

loss rate is computed as

Loss Rate =
Nexpected −Nreceived

Nexpected
× 100%,

where loss rates below 5% often have negligible impact on real-time EEG interpretation.

Network latency also plays a critical role. Defined by

tlatency = treceive − tsend,

latency must typically remain below 1–5ms for responsive neurofeedback or BCI applica-

tions. However, the total system latency includes three components:

1. Hardware acquisition delay: ≈ 4ms at 250Hz sampling.

2. GUI processing delay: typically 1–2ms.

3. Network transmission delay: 1–5ms under normal conditions.

This yields an end-to-end latency of 6–11ms, well below the 20ms threshold at which

delays become perceptible to users.

Finally, the packet rate determines how frequently data are transmitted. For eight channels

sampled at 250Hz with 4-byte samples, the data rate is 8 kB/s. Dividing by the packet

size Psize yields the packet rate:

Rpacket =
8000

Psize
.

Typical OpenBCI configurations send packets every 40–50ms (20–25 packets per second),

ensuring smooth and stable streaming.

Having outlined the overall processing pipeline—from analog signal acquisition in the

hardware to digital reconstruction, filtering, and UDP-based transmission at the software

level—we can now summarize the system-specific aspects described in this section. The

OpenBCI Cyton platform integrates precision hardware, digital preprocessing, and real-

time network streaming into a unified EEG acquisition pipeline. At the hardware level,
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the ADS1299 provides eight simultaneous channels with 24-bit resolution, a sampling

rate of fs = 250Hz, a least-significant-bit voltage resolution of ∆LSB = 0.02235µV, and

exceptionally low input-referred noise, enabling reliable detection of microvolt-level neural

activity. Building on this foundation, the OpenBCI GUI applies essential preprocessing

operations—including a 1–50Hz band-pass filter and a 50/60Hz notch filter—to produce

clean and interpretable EEG traces suitable for further analysis.

Once filtered and reconstructed, the data are packaged into JSON structures and streamed

via UDP, a low-latency communication protocol well suited for real-time neurotechnology

applications. With support for simultaneous multi-port transmission and packet rates of

20–25Hz, the system delivers high-resolution EEG signals efficiently to external clients

for real-time analysis, interaction, or multimodal integration.
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Table 1: OpenBCI Cyton 8-Channel EEG System Specifications

Parameter Symbol Value

Hardware (ADS1299)

Number of Channels C 8

ADC Resolution N 24 bits

Sampling Rate fs 250 Hz

Sampling Period Ts 4 ms (0.004 s)

Programmable Gain G 1, 2, 4, 6, 8, 12, 24

Default Gain Gdefault 24

Internal Reference Vref 4.5 V

Input Range (after
gain)

— ±Vref

LSB Step Size (G=24) ∆LSB 0.02235 µV

Common-Mode Rejec-
tion Ratio

CMRR >110 dB (~300,000:1)

Anti-Aliasing Filter
Cutoff

fcutoff ~125 Hz

Signal Characteristics

Typical EEG Ampli-
tude

— 20-100 µV

Input-Referred Noise — <1 µV (RMS)

Quantization Error
Range

eq ±0.0112 µV

Digital Processing

Band-Pass Filter (De-
fault)

— 1-50 Hz (IIR)

Notch Filter (USA) — 60 Hz (IIR, Q~30)

Notch Filter (Eu-
rope/Asia)

— 50 Hz (IIR, Q~30)

Network Streaming

Protocol — UDP

Max Simultaneous
Streams

— 3

Data Format — JSON

Typical Packet Rate — 20-25 packets/s

Samples per Packet — 10-12 samples (40-50 ms)

Data Rate — ~8 kB/s

Network Latency — 1-5 ms (typical)

Total System Latency — 6-11 ms (hardware + GUI + net-
work)
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3 Browser-Side EEG Spectral Analysis and

Visualization

The preceding sections have established how cortical potentials are transformed into dig-

ital data streams through hardware acquisition, GUI filtering, and UDP transmission.

At this section, following UDP-to-WebSocket conversion by the Node.js server, the signal

processing chain transitions into the browser environment, where the computationally in-

tensive task of spectral analysis takes place. Here, raw microvolt-level voltage sequences

are transformed into meaningful frequency-domain representations that reveal the under-

lying rhythms of neural activity.

This browser-based pipeline, illustrated in Figure 5 and implemented in javaScript files,

consists of five interconnected stages. The process begins with WebSocket-based data

reception, where incoming JSON packets are parsed and validated before individual EEG

samples are extracted. These samples are then stored in a circular buffer that maintains

temporal continuity while managing memory efficiently. Critically, the system imple-

ments tempo-adaptive windowing, wherein analysis segment durations are dynamically

determined by musical tempo and time signature—enabling precise temporal alignment

between neural responses and musical events. Once a complete window is available, the

discrete Fourier transform decomposes the time-domain signal into frequency components,

from which neurophysiologically relevant bands (delta, theta, alpha, beta, gamma) are

extracted. Finally, band-specific power calculations drive real-time canvas-based visual-

ization.

Importantly, each stage depends on the successful completion of the preceding one, form-

ing a tightly coupled processing chain that must balance computational efficiency with

robustness to network variability. The following subsections examine each component in

detail, using the section headlines that correspond to the nodes in Fig. 4 for traceabil-

ity. This structure illustrates how theoretical signal-processing principles translate into

practical, browser-based implementations.
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Figure 5: Browser-side EEG processing pipeline

3.1 Data Reception and Parsing

The yellow nodes in the Fig. 4 illustrates reception and parsing of the data in which

the browser-side processing pipeline begins with establishing a reliable communication

channel between the server and the web application to transmits this data for further

processing. This initial stage demands careful attention to asynchronous event handling

- where events are processed one at a time, in order, and each event must fully complete

before the next one begins, data validation, and error recovery to ensure subsequent

stages receive well-formed, temporally consistent data. As illustrated in the flowchart,

this comprises four sequential operations: WebSocket message reception, value parsing,

display updating, and sample extraction.

3.1.1 WebSocket Message

Modern real-time web applications require bidirectional, low-latency communication, which

the WebSocket protocol provides through persistent connections. Unlike traditional HTTP

request-response cycles, WebSocket allows the server to push data immediately upon avail-

ability. The browser initiates a connection to ws://localhost:8081, creating a direct

Page 25



Oğuzhan Tuğral EEG Processing Architecture

channel for continuous EEG packet transmission.

Because EEG data arrive at 250 Hz (every 4 milliseconds), the system cannot block on

any operation. Each incoming message triggers an onmessage callback that processes the

packet and immediately returns control to the event loop, ensuring subsequent packets

arrive without delay. The implementation includes onerror and onclose handlers that

detect connection failures and attempt automatic reconnection, maintaining continuous

data flow despite network disruptions.

3.1.2 Parse Value

Once a WebSocket message fires, the raw string undergoes conversion to a JavaScript ob-

ject via JSON.parse(). The expected packet format consists of three fields: a type identi-

fier ("eeg"), a data array containing multichannel samples as nested arrays [[ch1,...,ch8],

...], and a timestamp.

Network transmission is inherently unreliable. Consequently, parsing is wrapped in a

try-catch block to intercept JSON syntax errors. If parsing fails, the packet is discarded

with a logged error, but execution continues. Successfully parsed packets undergo struc-

tural validation: the system verifies expected fields exist, that type matches "eeg", and

that the data array contains eight-element subarrays. Packets failing these checks are

discarded, ensuring only well-formed data propagate through the pipeline.

3.1.3 Update Display

Beyond accepting and validating data, the reception stage provides immediate visual

feedback. As each packet is successfully parsed, the application extracts current microvolt

values for all eight channels and updates corresponding HTML elements. This real-time

display confirms correct data flow, allows operators to monitor signal quality, and provides

color-coded indicators that flag abnormal conditions.

Channels exhibiting voltages near ADC saturation limits (±187 µV) are highlighted in red,

signaling potential clipping artifacts. Conversely, channels showing stable signals appear
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in green, confirming optimal recording conditions. This immediate feedback ensures data

quality before committing computational resources to analysis.

3.1.4 Extract Sample

Having validated the packet and updated the display, the system extracts individual EEG

samples for buffering. The data field is a two-dimensional array: the first dimension in-

dexes time (typically 10-12 samples per packet) and the second indexes channels (eight per

sample). Access requires double-indexing: data[sampleIndex][channelIndex]. Before

buffering, the system performs data type verification using parseFloat() to ensure nu-

meric format. The validated sample then passes to the circular buffer’s insertion method,

completing the first stage of the browser-side processing pipeline.

3.2 Circular Buffer Management

Circular buffer is represented with the single brown node in Fig. 3 as the second stage in

signal processing. Following successful extraction of validated EEG samples from incoming

WebSocket packets, the processing pipeline transitions to data storage. At this point, the

system employs a circular buffer architecture that maintains a fixed-size window of recent

samples while automatically discarding older data. This approach balances two competing

requirements: providing sufficient temporal context for spectral analysis while ensuring

that memory consumption remains constant regardless of recording duration.

3.2.1 Store in Array

The circular buffer is implemented as a fixed-length JavaScript array initialized at system

startup with predetermined capacity. This capacity is determined by the maximum win-

dow size required for spectral analysis, which depends on the slowest musical tempo the

system expects to encounter. For instance, at 60 beats per minute with 4/4 time signature,

one measure spans 4 seconds, corresponding to 1000 samples at 250 Hz sampling rate. To

accommodate slower tempos and provide margin for sliding window operations, typical

implementations allocate buffers holding 2000-4000 samples, representing 8-16 seconds of
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continuous recording.

The buffer operates on a write-pointer mechanism that tracks the current insertion po-

sition. When a new sample arrives from the extraction stage, it is written to the array

index indicated by the write pointer, which then increments by one. Critically, when the

write pointer reaches the end of the array, it wraps around to index zero rather than

expanding the array. This wraparound behavior—achieved through modulo arithmetic

where writePointer = (writePointer + 1) % bufferSize—gives the circular buffer

its name and memory-efficient properties. As new samples continuously overwrite old

samples, the buffer always contains the most recent N samples, where N equals buffer

capacity.

Reading data from the circular buffer requires careful index management to maintain tem-

poral ordering. When the spectral analysis stage requests a window of M samples, the

system must extract M consecutive samples accounting for the possibility that these sam-

ples span the wraparound boundary. This is accomplished by calculating a read-start

index as readStart = (writePointer - windowSize + bufferSize) % bufferSize,

then extracting samples sequentially with wraparound handling. For example, if the

write pointer sits at index 150 in a 2000-sample buffer and 200 samples are requested, the

system retrieves samples from indices 1950-1999 followed by 0-149.

The implementation maintains temporal integrity through synchronized operations. Be-

cause JavaScript executes in a single-threaded event loop, race conditions between writing

new samples and reading existing samples do not occur. However, the system must en-

sure that read operations never request more samples than the buffer contains. This

is enforced by tracking the total number of samples received since initialization: until

this count exceeds the requested window size, spectral analysis is deferred, preventing

attempts to analyze incomplete data.

Memory efficiency represents the primary advantage of this architecture. By maintaining

fixed allocation, the buffer avoids garbage collection overhead associated with dynamic ar-

ray resizing and eliminates memory leaks that could degrade performance during extended
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recording sessions. The constant memory footprint enables reliable real-time operation, as

processing latency remains predictable regardless of session duration. Following successful

storage, samples remain available for retrieval when the tempo-adaptive windowing stage

determines that sufficient data have accumulated for spectral analysis.

3.3 Tempo-Adaptive Windowing

One of the distinctive features of this system is the synchronization of EEG analysis win-

dows with musical tempo, enabling multimodal correlation between neural dynamics and

musical structure. This part of the program is illustrated with pink nodes in Fig. 3. Tra-

ditional EEG spectral analysis employs fixed-duration windows that bear no relationship

to external stimuli. In contrast, the present implementation dynamically adjusts window

duration to align precisely with musical measures, ensuring that each spectral analysis

captures neural activity corresponding to complete musical phrases. This tempo-adaptive

approach is essential for investigating how brain rhythms entrain to musical rhythms, a

central question in music cognition research.

3.3.1 Tempo and Time Signature Retrieval

Before calculating appropriate window sizes, the system must obtain current musical

tempo and time signature information. This information originates from MIDI data

processed by the the javaScript module, which tracks musical timing in real-time as MIDI

events arrive from Ableton Live. The counter.js module maintains two critical variables:

currentTempo (expressed in beats per minute) and timeSignature (expressed as a string

such as "4/4" or "3/4"). These values are exposed as global JavaScript variables accessible

to the EEG processing pipeline.

The tempo retrieval mechanism operates continuously, querying the script at regular in-

tervals—typically every 100 milliseconds—to detect tempo changes that may occur during

performance. When MIDI data indicate a tempo change, the counter.js module updates

its internal state, and the next query by the EEG pipeline retrieves the new value. This re-

sponsiveness ensures that window calculations remain synchronized even during prepared
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accelerandi, ritardandi, or abrupt tempo shifts common in expressive musical performance.

3.3.2 Window Size Calculation

Having obtained tempo and time signature, the system calculates the appropriate window

duration corresponding to user selected musical measure number. The fundamental rela-

tionship derives from the definition of tempo: in case of selected 1 bar duration, beats per

minute indicates how many beats occur in 60 seconds, so the duration of one beat equals

60/tempo seconds. The time signature’s numerator specifies how many beats comprise

one measure. Therefore, one measure spans (60/tempo) × beatsPerMeasure seconds.

To convert this temporal duration to sample count, the formula multiplies by the sampling

rate: windowSize = (60 / tempo) × beatsPerMeasure × samplingRate. For exam-

ple, at 120 beats per minute with 4/4 time signature and 250 Hz sampling rate, the

calculation proceeds as follows: one beat lasts 60/120 = 0.5 seconds, one measure con-

tains 4 beats spanning 2 seconds, and 2 seconds at 250 Hz yields 500 samples. Similarly,

at 60 BPM with 3/4 time, one measure spans 3 seconds corresponding to 750 samples.

Because array indices must be integers, the calculated window size undergoes rounding

to the nearest whole number. Additionally, the system enforces minimum and maximum

constraints to prevent pathological cases. The minimum constraint—typically 250 sam-

ples (1 second)—ensures sufficient frequency resolution for distinguishing EEG bands,

as frequency resolution equals samplingRate/windowSize. Windows shorter than 250

samples would yield resolution coarser than 1 Hz, insufficient for separating theta (4-8

Hz) from alpha (8-13 Hz) bands. The maximum constraint—typically equal to buffer

capacity—prevents requests for more samples than the circular buffer contains. When

calculated windows exceed these bounds, they are clipped to the nearest valid value.

3.3.3 Window Boundary Detection

Once the appropriate window size is determined, the system must decide whether suf-

ficient data have accumulated in the circular buffer to perform analysis. This decision

occurs through a boundary detection check that compares the total number of samples
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received against the calculated window size. The check employs a simple conditional: if

(totalSamplesReceived >= windowSize), then proceed to spectral analysis; otherwise,

continue buffering.

This decision point appears in the flowchart as a diamond-shaped conditional box labeled

"Data At Calculated Window Boundary?" with two branches. The "No" branch loops

back to the storage stage, allowing additional samples to accumulate until the condition

is satisfied. The "Yes" branch proceeds forward to segment processing and DFT compu-

tation. This gating mechanism ensures that spectral analysis never attempts to process

incomplete windows, which would produce invalid frequency-domain representations.

The boundary detection operates continuously as new samples arrive. After each success-

ful DFT computation, the system does not reset the sample counter but instead continues

accumulating samples, checking the boundary condition with each new arrival. This en-

ables sliding window analysis wherein successive windows overlap substantially, providing

high temporal resolution of spectral dynamics while maintaining alignment with musical

structure.

3.4 Spectral Analysis via Discrete Fourier Transform

When the buffer reaches the calculated window boundary, the system performs frequency-

domain analysis to extract spectral features corresponding to established EEG frequency

bands. This transformation from time-domain voltage sequences to frequency-domain

power spectra constitutes the computational core of the entire pipeline, revealing the

rhythmic oscillations that characterize neural activity. While raw EEG data appear as

chaotic voltage fluctuations when plotted over time, spectral decomposition exposes the

underlying periodic components—delta, theta, alpha, beta, and gamma rhythms—that

reflect distinct neurophysiological states and cognitive processes.
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3.4.1 Process Segment

Before applying the Fourier transform, the system extracts the appropriate segment from

the circular buffer and applies preprocessing operations that improve spectral quality.

Segment extraction employs the read-index calculation described previously, retrieving

windowSize consecutive samples while accounting for buffer wraparound. These samples

are copied into a separate processing array to prevent interference from ongoing write

operations.

The extracted segment typically undergoes windowing to reduce spectral leakage—an arti-

fact that occurs when the signal at window boundaries exhibits discontinuities. Abruptly

truncating a sinusoidal signal creates artificial high-frequency components that contami-

nate the spectrum. To mitigate this, the system applies a window function that gradually

attenuates samples toward the segment boundaries. The Hann window is commonly em-

ployed, defined as

w[n] = 0.5− 0.5 cos

(
2πn

N − 1

)
, n = 0, 1, . . . , N − 1.

Multiplying each sample by its corresponding window coefficient produces smooth tran-

sitions to zero at both boundaries, eliminating discontinuities while preserving central

samples at full amplitude.

Additionally, the segment undergoes detrending to remove DC bias. EEG signals often

contain slow voltage drifts unrelated to neural oscillations—arising from electrode po-

larization, amplifier offsets, or movement artifacts. These drifts manifest as large DC

components (0 Hz) in the spectrum that can distort power calculations. Detrending typ-

ically involves computing the segment’s mean value and subtracting it from all samples,

centering the signal around zero. This simple linear detrending effectively removes the

DC component without affecting higher-frequency neural rhythms of interest.
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3.4.2 Compute DFT

The Discrete Fourier Transform decomposes the preprocessed time-domain segment into

its constituent frequency components. Mathematically, the DFT is defined as:

X[k] =
N−1∑
n=0

x[n] · e−j2πkn/N (1)

where x[n] represents the input samples, N is the window length, k indexes frequency

bins from 0 to N-1, and j is the imaginary unit. Each frequency bin k corresponds to a

specific frequency f = k·fs/N, where fs is the sampling rate (250 Hz). The exponential

term can be expanded using Euler’s formula as cos(2kn/N) - j·sin(2kn/N), yielding real

and imaginary components.

In JavaScript, this is implemented through nested loops. The outer loop iterates over

frequency bins k, while the inner loop accumulates the sum over time samples n. For each

bin, the algorithm maintains separate accumulators for real and imaginary parts:

Real[k] = x[n]·cos(2kn/N) Imaginary[k] = x[n]·sin(2kn/N)

This naive implementation exhibits O(N²) computational complexity: for each of N fre-

quency bins, N multiply-accumulate operations are performed, totaling N² operations. For

typical window sizes of 500-1000 samples, this corresponds to 250,000-1,000,000 operations

per transform. Modern JavaScript engines execute these operations in 5-10 milliseconds

on contemporary hardware, acceptable for real-time performance. However, production

implementations often employ Fast Fourier Transform (FFT) algorithms—such as the

Cooley-Tukey radix-2 FFT—that reduce complexity to O(N log N), providing substantial

speedup for larger windows.

Once the DFT is computed, the magnitude spectrum is calculated from the real and

imaginary components: |X[k]| = sqrt(Real[k]² + Imaginary[k]²). The magnitude spec-

trum represents the amplitude of each frequency component, with units of microvolts.

The power spectrum—more commonly used in EEG analysis—is obtained by squaring
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the magnitude: Power[k] = |X[k]|². Power has units of microvolts squared and directly

represents the energy contribution of each frequency.

The frequency resolution of the DFT equals f = fs/N. For a 500-sample window at 250

Hz, resolution is 0.5 Hz, meaning each bin spans 0.5 Hz. This resolution determines the

ability to distinguish nearby frequencies: narrow EEG bands like alpha (8-13 Hz) require

sufficient resolution to separate them from adjacent theta (4-8 Hz) and beta (13-30 Hz)

bands. Longer windows provide finer frequency resolution but reduce temporal resolution,

embodying the fundamental uncertainty principle of time-frequency analysis.

3.4.3 Extract Bands

Having computed the power spectrum, the system extracts neurophysiologically relevant

frequency bands. EEG research has established five canonical bands, each associated with

distinct cognitive and behavioral states:

Delta (0.5-4 Hz) dominates during deep sleep and reflects unconscious processes. Elevated

delta in waking states may indicate cortical lesions or pathological conditions. Theta (4-8

Hz) appears during meditation, creative thinking, and REM sleep, reflecting memory con-

solidation and emotional processing. Alpha (8-13 Hz) characterizes relaxed wakefulness

with closed eyes, often called the "idling rhythm" of the visual cortex. Alpha suppression

occurs during visual processing and mental effort. Beta (13-30 Hz) accompanies active

thinking, focused attention, and anxiety, reflecting cortical activation. Gamma (30-50

Hz) supports high-level cognition, sensory binding, and consciousness itself, though its

interpretation remains debated.

To extract band power, the system maps frequency ranges to DFT bin indices. The bin

corresponding to frequency f is k = round(f·N/fs). For delta (0.5-4 Hz) in a 500-sample

window at 250 Hz, the bin range is k = 1 to 8. The system iterates over this range,

accumulating power values: DeltaPower = Power[k] for k = 1 to 8. This sum represents

the total spectral energy within the delta band. The same procedure applies to all bands,

yielding five scalar values representing the relative strength of each rhythm.
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Band power can be expressed in absolute terms (microvolts squared) or normalized. Rela-

tive band power divides each band by the total power across all bands, yielding proportions

that sum to 1.0. This normalization reduces inter-subject variability and facilitates com-

parisons. Logarithmic scaling (10·log(power)) converts power to decibels, compressing the

dynamic range and emphasizing relative changes.

3.4.4 Sliding Windows

Rather than analyzing a single window and stopping, the system employs sliding window

analysis to track temporal evolution of spectral features. After computing band powers

for one window, the system advances by a hop size—typically 50

This sliding window approach generates a time-frequency representation wherein band

powers are computed at regular intervals (every 1 second for 250-sample hops at 250 Hz).

The resulting power trajectories reveal how neural rhythms wax and wane in response

to musical events, task demands, or spontaneous fluctuations. For instance, alpha power

may decline during eyes-open periods and recover during rest, while beta may surge during

cognitive effort.

The trade-off between temporal and frequency resolution is fundamental. Longer windows

yield finer frequency resolution but coarser temporal localization, while shorter windows

provide better time resolution at the cost of frequency precision. The tempo-adaptive

windowing approach navigates this trade-off by selecting window durations that align

with musical structure, ensuring that each analysis window captures meaningful musical

units while maintaining adequate frequency resolution for band separation.

3.5 Power Calculation and Canvas Visualization

The final stage computes band-specific power metrics and renders real-time visualizations

on an HTML5 canvas element, providing immediate visual feedback that enables operators

to monitor neural dynamics as they unfold. This visualization confirms that spectral

analysis functions correctly, allows quality assessment of ongoing recordings, and provides
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intuitive representations of complex frequency-domain data.

3.5.1 Select Last Window

Before computing displayable power values, the system must select the appropriate anal-

ysis window. In sliding window implementations that generate multiple overlapping anal-

yses per second, the visualization displays the most recent complete window to maintain

temporal coherence with ongoing neural activity. The system maintains a queue of com-

pleted spectral analyses, each tagged with a timestamp indicating when the corresponding

EEG segment was recorded.

Window selection prioritizes recency while avoiding incomplete analyses. When the

visualization update cycle triggers—synchronized with the browser’s refresh rate via

requestAnimationFrame—the system queries the analysis queue for the newest entry.

If multiple analyses completed since the last frame, only the most recent is selected, pre-

venting visualization lag. This ensures that displayed power values reflect current brain

state rather than outdated data.

During initial startup or following tempo changes, the analysis queue may be temporarily

empty while the system accumulates sufficient samples for the new window size. To

prevent visualization artifacts, the system retains the previous frame’s display until new

analyses become available, maintaining smooth visual continuity.

3.5.2 Calculate Power Bands

Having selected the target window, the system computes summary statistics for each

frequency band. Although spectral analysis already calculates power for each DFT bin,

visualization requires aggregating these bins into five scalar values. The fundamental

calculation sums power across bins comprising each band:

Pband =
∑

k∈band

|X[k]|2.

Raw power values often span several orders of magnitude, complicating visualization.
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To address this, the system typically applies logarithmic scaling, converting power into

decibels:

PdB = 10 log10(P ).

This compression maps the wide dynamic range of EEG power — varying from 10−2 to

102 µV 2 — into a manageable scale suitable for bar chart display. Decibel scaling also

aligns with human perception, which tends to be logarithmic.

Alternatively, relative band power normalizes each band by total power:

Prelative =
Pband∑

all bands Pband
.

This yields proportions summing to 1.0, facilitating comparisons between bands and re-

ducing sensitivity to absolute amplitude variations caused by electrode impedance changes.

The choice depends on research goals: absolute power preserves overall signal strength

information, while relative power emphasizes spectral energy distribution.

3.5.3 Draw Canvas

Visualization employs the HTML5 Canvas API, which provides a programmable drawing

surface for real-time graphics. The canvas element exists as a DOM object with specified

dimensions, and JavaScript accesses it through a 2D rendering context exposing drawing

primitives.

The rendering process begins by clearing the previous frame using context.clearRect(),

erasing all prior graphics. The coordinate system origin sits at the top-left corner, with

x increasing rightward and y downward. To display five frequency bands as a bar chart,

the system divides canvas width by five, allocating equal horizontal space to each band.

Bar height is computed by mapping power values—after logarithmic scaling or normal-

ization—to pixel coordinates through linear interpolation.
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Color coding enhances interpretability: delta appears in blue, theta in green, alpha in

yellow, beta in orange, and gamma in red. This rainbow-like progression leverages familiar

visual metaphors. Each bar is drawn using context.fillRect(x, y, width, height),

with parameters positioning and sizing the rectangle. Text labels identifying bands and

numerical values are rendered using context.fillText().

The rendering cycle synchronizes with the browser’s refresh rate—typically 60 Hz—through

requestAnimationFrame(), which schedules updates to coincide with the display’s ver-

tical sync. This prevents screen tearing and ensures smooth animation. The visualiza-

tion callback recursively calls requestAnimationFrame(), creating a continuous render-

ing loop that updates as new spectral analyses complete. When band powers change

gradually, the visualization exhibits fluid motion; when they shift abruptly—during eyes-

open to eyes-closed transitions—the bars jump accordingly, providing immediate visual

feedback of neural state changes.

3.6 Summary of Browser-Side Pipeline

This section has described the complete browser-side EEG processing pipeline, which

transforms UDP-transmitted JSON packets into real-time frequency-domain visualiza-

tions suitable for multimodal music-brain research. The pipeline comprises five sequential

stages, each addressing a distinct aspect of signal processing while maintaining tight in-

tegration with the overall system architecture.

The data flow begins with WebSocket message reception and JSON parsing, where in-

coming packets undergo validation and error handling to ensure temporal consistency.

Extracted samples then enter a circular buffer employing wraparound write-pointer man-

agement, maintaining fixed memory allocation while providing access to recent history.

Critically, the tempo-adaptive windowing stage synchronizes analysis segments with mu-

sical structure by dynamically calculating window sizes based on MIDI-derived tempo and

time signature information retrieved from counter.js. This synchronization represents the

system’s key innovation, enabling precise temporal alignment between neural dynamics
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and musical events—a capability absent in conventional EEG analysis workflows.

Once sufficient samples accumulate, the spectral analysis stage performs discrete Fourier

transformation, decomposing time-domain voltage sequences into frequency-domain power

spectra. The naive O(N²) JavaScript implementation executes in 5-10 milliseconds for typ-

ical 500-1000 sample windows, meeting real-time performance requirements. Frequency

band extraction then aggregates DFT bins into neurophysiologically relevant delta, theta,

alpha, beta, and gamma bands, each reflecting distinct cognitive and behavioral states. Fi-

nally, the visualization stage renders band powers as color-coded bar charts using HTML5

Canvas API, synchronized with display refresh through requestAnimationFrame.

This entirely browser-based implementation demonstrates that sophisticated real-time

signal processing traditionally confined to specialized environments like MATLAB can

be accomplished using standard web technologies. The pipeline’s modular architecture

facilitates future extensions—such as incorporating FFT libraries for computational ac-

celeration, implementing additional spectral features like spectral entropy or phase co-

herence, or expanding visualization capabilities to include time-frequency spectrograms.

Integrated with the hardware acquisition and server components described previously,

this browser-side processing completes the end-to-end pathway from cortical potentials to

actionable spectral representations.
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