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Abstract

This work introduces a tempo- and time-signature-responsive real-time EEG
processing system built on OpenBCI hardware, Node.js networking, and browser-
based JavaScript analysis. The system acquires 8-channel EEG via the ADS1299
front-end, which is a high-resolution biopotential amplifier, performs digital filtering
in the OpenBCI GUI, streams data over UDP to a WebSocket server, and computes
spectral features through a tempo-adaptive windowing mechanism whose duration
is dynamically derived from musical tempo and meter. A circular buffer ensures
continuous sample flow, and sliding-window DFT enables high-resolution spectral
tracking. The system achieves stable end-to-end latency of approximately 6-11 ms,
maintains synchronized EEG—music alignment across tempo changes, and generates
interpretable delta, theta, alpha, beta, and gamma band trajectories for real-time
visualization. By coupling EEG analysis windows directly to musical tempo and
time signature, this framework provides a novel foundation for real-time multimodal
corpus creation and opens new possibilities for studying neural entrainment, musical

structure perception, and interactive performance systems.
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1 Basics of Digital Signal Processing

Building on the challenges outlined in the first section, this part introduces tempo- and
time-signature—responsive EEG windows as a proposed contribution toward solving Prob-
lem 1'. This approach integrates harmonic and musical analysis with insights from music
and health sciences, enabling a real-time tool that adapts dynamically to musical structure

and physiological responses.

The basic concepts of Digital Signal Processing (DSP) form the foundation for understand-
ing modern biosignal acquisition. A signal is a representation of how a physical quantity
varies over time or space. Examples include electrical brain activity measured through
EEG as a function of time, air-pressure fluctuations corresponding to sound waves, and
light intensity distributed across a two-dimensional array in an image. Signals underlie all
information-transmission and processing systems, serving as carriers of data from sensors,

biological systems, communication channels, and countless other sources.

Extending these fundamental principles, the following section examines in greater detail
how signals are processed, transformed, and interpreted within the context of real-time

multimodal analysis.

IThis section constitutes the second chapter of my ongoing master’s thesis and builds upon the findings
presented in the first chapter. That earlier section concluded that recent interdisciplinary music- and
health-science research faces two major, interrelated challenges.

First, music-and-memory studies rarely incorporate detailed harmonic or structural musical anal-
ysis. This limitation stems from a second, deeper problem in both Music Information Re-
trieval (MIR) and music theory: current technologies used in music-and-memory research rely al-
most entirely on expert-annotated datasets and lack integrated, real-time systems capable of auto-
matically tokenizing musical structure while simultaneously synchronizing it with behavioral, neu-
ral, and physiological multimodal measurements. (Details of the first chapter can be found at:
https://oguzhantugral.com /research /musicTheory /dataAnalysisMusicHealth.html.)

Accordingly, while the present work aims to contribute to a potential solution for Problem 1, the
sample project Real-Time Roman Numeral Analysis from Live MIDI Performance Using a Distributed
Multimodal Architecture represents a contribution toward solving Problem 2.
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1.1 Shannon—Weaver Communication Model

Before introducing the fundamental operations of signal processing, it is instructive to
recall the Shannon—Weaver communication model, which provides a conceptual framework
for understanding how information is generated, transmitted, distorted by noise, and
recovered. This model highlights the entire lifecycle of a signal—from its origin at the
information source to its final interpretation at the destination—and thereby connects

directly to the motivation behind signal processing itself.

Destination
Noise Source

Information Source

Corrupts signal

Generates information Recovers signal

Transmitter Converts to transmissible signal Channel Sends through channel Receiver

Figure 1: Shannon—Weaver communication model.

From a signal processing perspective, Fig. 1 emphasizes two critical observations. First,
the information source generates the physical signal-—such as brain activity, sound waves
from an instrument, or visual patterns—that symbolize the information to be conveyed.
Second, as the signal propagates through the channel, it becomes distorted through at-
tenuation and the addition of noise. Signal processing emerges precisely as the mathe-
matical and algorithmic framework designed to analyze such corrupted signals, extract
the underlying information, and synthesize new signals for reliable communication and
computation. Thus, the two key concepts—analysis and synthesis—must be introduced

to clarify their roles within the broader context of signal processing.

1.2 Analysis and Synthesis

Signal processing encompasses two fundamental operations. The first is analysis, which

involves understanding or extracting information from signals, including their features,
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structure, and underlying patterns. Examples include analyzing EEG signals to detect
neural rhythms, extracting spectral content from sound waves, or identifying edges in
images. The second operation is synthesis, which involves generating signals that convey
intended information, such as producing speech waveforms, musical tones, or control sig-
nals. Together, these operations form the foundation of modern communication, sensing,

and computational systems.

Analog models describe signals as continuous functions of time or space, representing
physical quantities that vary smoothly without discrete steps. In contrast, digital models
represent signals as sequences of discrete numerical values that approximate the continu-
ous waveform. This representation enables efficient storage, processing, and transmission
using unified algorithms across digital hardware and software systems. The transition
from analog to digital fundamentally transforms how signals can be manipulated: digital
signals are built upon two ingredients—discrete time (sampling) and discrete amplitude

(quantization).

1.2.1 Sampling

Sampling converts a continuous-time signal into a discrete sequence by measuring its value

at uniformly spaced time instants:

x[n] := x(nTy), n € Z.

Here, Ty is the sampling period and f; = 1/T} is the sampling rate in samples per second.
For example, if Ty, = 0.004s, then f; = 250Hz, and the system acquires 250 discrete
samples per second. Each discrete value x[n] represents the amplitude of the continuous-
time signal at the instant ¢ = nT,. In other words, while n is a discrete index of the
digitized signal (analogous to an array index), its multiplication with the sampling period
gives the corresponding time value in the original analog signal. This relationship forms

the essential link between continuous-time and discrete-time representations.

Having established the basic mechanism that maps continuous-time signals to their discrete-
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time counterparts, we now turn to the fundamental principle that determines the con-
ditions under which this conversion preserves all the information in the original signal.
This provides the proper representation of the signal in the time domain, and before ex-
amining how quantization introduces additional distortions, it is helpful to consider how
the sampling theorem directly influences the design and operation of EEG acquisition

hardware.

For EEG applications, neural signals contain meaningful information primarily below
100 Hz, although high-frequency muscle artifacts and environmental noise can extend
well beyond this range. The OpenBCI Cyton system samples at f, = 250 Hz, which sat-
isfies the Nyquist criterion for signals bandlimited to 125 Hz. To ensure that frequency
components above this limit do not cause aliasing, the ADS1299 analog front-end incor-
porates a hardware anti-aliasing filter before digitization, typically with a cutoff frequency
near f,/2 ~ 125Hz. This filter attenuates high-frequency content that would otherwise
violate the sampling theorem, ensuring that the discrete samples faithfully represent the

underlying EEG signal.

1.2.2 Quantization

The second step of digitization, quantization, maps each sample to one of L allowable am-
plitude levels, producing integer-valued data &[n]. Whereas continuous amplitudes may
take any real value, quantization restricts each sample to a finite set of levels, enabling dig-
ital storage and computation. Together, sampling and quantization transform an analog

signal into a digital sequence.

While the sampling theorem explains how a clean, bandlimited signal can be captured
without loss of information, real-world communication systems rarely operate under ideal,
noise-free conditions. In the Shannon—Weaver communication model, noise enters the

channel as an additive disturbance,

y(t) = =(t) + w(t),
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where y(t) is the measured signal formed by combining the clean signal z(¢) with random
noise w(t) arising from thermal effects, interference, and other disturbances. Such noise
reduces the achievable data rate and the reliability of communication, and its influence

differs substantially between analog and digital transmission systems.

In analog communication, noise accumulates continuously as the signal propagates through
the channel. Each amplifier or repeater passes forward a slightly more corrupted version
of the waveform, and no mechanism exists to restore the signal perfectly. By contrast,
digital communication introduces a decision stage at every repeater: received symbols
are compared against thresholds, and the nearest ideal symbol is regenerated. Because
the digital repeater outputs clean, quantized symbols, noise does not accumulate indef-
initely; instead, it is periodically removed at each decision point. However, because the
present work focuses on the mechanisms underlying software for generating and process-
ing multimodal data—including EEG measurements—it is more appropriate to consider
modern biosignal acquisition systems rather than classical communication channels, where

repeaters and symbol decisions play a central role.

Devices such as the OpenBCI Cyton board follow a fundamentally different architecture:
rather than transmitting symbols over a noisy communication channel that would require
digital regeneration, they condition the analog EEG signal locally—using differential am-
plification, analog filtering, and gain control-—and then convert it directly into digital
samples for short-range digital transmission. For example, each EEG channel measures
the voltage difference between an active scalp electrode and a reference electrode, ampli-
fies and filters this microvolt-level signal, and digitizes it before sending it wirelessly to a
computer. Once digitized, these samples are transmitted as discrete integer packets rather
than as analog waveforms. Thus, unlike classical analog chains, there is no progressive
accumulation of noise during transmission: all critical noise-sensitive operations occur
before digitization, and all subsequent communication is effectively noise-free except for

occasional packet loss.

Consequently, the notion of a “channel” in the Shannon—Weaver sense plays a reduced role
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in such systems. For biosignal acquisition hardware, the primary challenge lies in ensur-
ing low-noise analog conditioning prior to sampling, not in symbol regeneration during
transmission. For this reason, the following section focus on the internal signal-processing
pipeline of the acquisition device itself, with emphasis on amplification, filtering, sampling,

and quantization in the ADS1299-based OpenBCI Cyton system.
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2 EEG Signal Processing: Hardware, Software, and

Data Transfer

Within the present software framework developed in this work, multimodal synchronized
data are generated by integrating EEG-derived features that are mapped to musical rep-
resentations—such as automatically detected Roman numeral harmonic analyses—as well
as behavioral markers including facial-expression tracking, go/no-go performance metrics,
and estimates of valence and emotion. The EEG signals are acquired using an OpenBCI
Cyton device. Accordingly, this section provides a technical overview of the Cyton 8-
channel EEG data acquisition and processing pipeline, which converts cortical potentials
into digital data through three principal stages: (1) hardware acquisition via the ADS1299
analog front-end, (2) digital processing in the OpenBCI GUI, and (3) network transmis-
sion via the UDP protocol. The OpenBCI Cyton 8-channel EEG system thus provides a
complete pathway from tiny scalp voltages to real-time digital data that can be consumed

by other software modules.

When neurons fire, they generate electrical signals on the order of 20-100 V— around
10,000 times weaker than a 1.5 V AA battery—so the first challenge is simply detecting
them. In the hardware stage, electrodes pick up these faint potentials, and the ADS1299
chip on the Cyton board differentially measures, amplifies, filters, and converts them into
high-resolution digital codes. In the software stage, the OpenBCI GUI converts these
codes back into voltage values, applies standard digital signal processing (such as band-
pass and notch filtering), and exposes both raw and filtered data streams for inspection
and analysis. In the network stage, the GUI uses low-latency UDP streaming to send
multi-channel EEG data in JSON format to environments like Python, MaxMSP, or
JavaScript, enabling real-time neurofeedback, interaction, and multimodal performance.
The following sections explain each of these stages in detail, linking hardware behavior,

DSP fundamentals, and network streaming.
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2.1 Hardware Acquisition (ADS1299)

The Cyton board uses a specialized chip called the ADS1299, manufactured by Texas
Instruments. This chip is specifically designed for biological signals and provides eight
input channels for simultaneous multi-site measurement, a 24-bit analog-to-digital con-
verter (ADC) for high-resolution digitization, programmable-gain amplifiers for boosting
weak signals, and built-in filtering stages for reducing noise. The complete acquisition

process implemented by the ADS1299 can be understood as a sequence of seven stages.

Reference
Electrode
(6_REF(t))

Active Electrode
(¢_active(t))

Sgnal £Slgnal
Differential Amplification
V(t) = ¢_active(t) — ¢_REF(t) Finish
CMRR = 110 dB

‘ Amplification ’ Output to Computer ’

Vamp(t) = G x V(t) (timeSeriesRaw)

A 4

XA(t) = hA(t) * Vamp(t)

cutoff = 125 Hz

Analog Anti-Aliasing Filter
N = Vamp[n])/A

Digital Code Generation ’

3

Y
Sampling @ 250 Hz .Quantization (24-bit ADC)
Vamp[n] = Vamp(n-Ts) x[n] = A - round(Vamp[n]/A)
A =0.02235 pv

Figure 2: openBCI Hardware Acquisition

The signal acquisition chain begins with differential amplification, in which the system
measures the potential difference between the active and reference electrodes rather than

the absolute potential at either site. The differential input voltage is defined as

V(ﬂ - @activc(t) - @REF(tL

a formulation that effectively suppresses noise components that appear identically on both
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electrodes. This noise rejection is governed by the ADS1299 front end, whose common-
mode rejection ratio (CMRR) exceeds 110 dB, corresponding to a linear attenuation factor

of approximately 3 x 10°.

Following differential amplification, the signal is scaled by the programmable gain ampli-

fier,

‘/amp(f) =G V(t>,

which increases the microvolt-level EEG fluctuations to a range suitable for digitization.

Before conversion to the digital domain, an analog anti-aliasing filter attenuates spectral

components above the Nyquist limit. The filtered signal is expressed as
rA(t) = ha(t) * Vamp (1),

where /4 (t) denotes the filter’s impulse response.

The conditioned analog signal is then uniformly sampled with period 7% = 0.004 s, corre-

sponding to f; = 250 Hz. The resulting discrete-time sequence is

"/Etrrlp [H] = ‘/E””P (”TS) :

Each sample is quantized by the 24-bit ADC using two’s complement encoding. The

quantized output is

~ L/tlm D [77}
zn|=A dl —=—
z[n] roun < ) :

where A denotes the quantization step size. For the ADS1299, this step size is

2Vie
G 22

Arss = —roee 22 0.02235 4V,

yielding a maximum quantization error of £A /2 ~ 0.011 V.
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Finally, the ADC outputs the corresponding signed integer code,

""lep {77}

N = ,
Arsp

which is transmitted to the host computer as the raw time-series data. In summary, the
hardware pipeline—differential amplification, gain scaling, analog filtering, sampling, and
quantization—transforms extremely weak biopotential signals into precise digital mea-

surements suitable for downstream software processing.

2.2 OpenBCI GUI Digital Signal Processing

Having established how the hardware conditions, amplifies, and digitizes the EEG signal,
we now transition to the software domain. In particular, the OpenBCI GUI (Graphical
User Interface) represents the first stage of software-based signal interpretation. After
the Cyton board transmits the integer-encoded data packets, the GUI performs two es-
sential operations. First, it converts these integer codes back into meaningful voltage
values expressed in microvolts, reestablishing the physical interpretation of the recorded
EEG. Second, it applies digital filters that remove noise and enhance the clarity of the
reconstructed signal. Together, these operations ensure that the incoming data stream is
both interpretable and ready for visualization or higher-level analysis. Figure 3 illustrates

the full signal acquisition flow from hardware to software.
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( (
Digital Code N from Cyton Received via USB/BT
\§ \
e $ e 2
Convert to pVv Inverse scaling
\
| J
( ) (
timeSeriesRaw (unfiltered) — [———3) Save to file
& J L )
e M) (
Apply Digital Filters Band-pass + Notch
J | 7
s B
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timeSeriesFilt (display & Reammer =nal
export)
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Figure 3: Digital signal reconstruction and filtering pipeline in the OpenBCI GUI.

As the data transitions from raw numerical form toward physiologically meaningful units,
the first computational step involves restoring the original microvolt-scale signal ampli-

tude.

2.2.1 Inverse Scaling to Microvolts

At this stage, the OpenBCI GUI reverses the hardware-side scaling by converting the
incoming digital code back into a voltage expressed in microvolts. Since the ADS1299
first amplified the signal by the gain factor G’ and then quantized it into an integer code

N, the GUI reconstructs the voltage using

_ N - ALSB
G )

Page 13



Oguzhan Tugral EEG Processing Architecture

where N is the transmitted digital code, A is the quantization step size (approximately
0.02235 V), and G is the gain applied during amplification (typically 24). We divide
by G because the hardware originally multiplied the signal by this factor; undoing this
operation restores the voltage to its true physiological scale. This reconstructed signal,
known as timeSeriesRaw in the GUI, corresponds to the unfiltered EEG trace displayed

in microvolts.

Once the signal has been accurately reconstructed in the voltage domain, the next logical
step is to remove unwanted frequency components that could obscure meaningful neural

activity.

2.2.2 Digital Filtering

In this phase, the OpenBCI GUI applies digital filters to suppress noise and isolate the

relevant components of the EEG. The filtered value at sample index n is given by
T [n] = Z hplk] - Z[n — K,

where hp|k| represents the digital filter coefficients and 2[n — k| denotes earlier samples
of the reconstructed signal. Conceptually, the filter outputs each sample as a weighted
combination of multiple past inputs, allowing desired frequencies to pass while attenuating

sources of interference.

With the filtering mechanism defined, we now turn to the specific types of filters most

commonly employed in the OpenBCI GUI.

2.2.3 Common Filters Used in OpenBCI GUI

Digital filtering is central to maintaining clarity in EEG recordings, and the OpenBCI
GUI implements several standard filter types to achieve this goal. Two of the most critical
are the band-pass filter, which isolates the EEG-relevant frequency band, and the notch

filter, which suppresses power line interference.
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Band-Pass Filter

The band-pass filter preserves frequencies relevant for EEG interpretation, typically be-
tween 1 and 50 Hz. This removes slow drifts (near 0 Hz) caused by electrode motion or
thermal variation, and suppresses high-frequency components above 50 Hz generated by
muscle activity or environmental electronics. The 1 Hz high-pass portion also acts as a
DC blocking filter, removing constant voltage offsets accumulated during acquisition. In
the OpenBCI GUI, the default configuration is a 1-50 Hz band-pass implemented using
an Infinite Impulse Response (IIR) architecture, providing steep roll-off characteristics

with minimal computational cost.

Notch Filter

A notch filter selectively attenuates power line interference at either 60 Hz (North Amer-
ica) or 50 Hz (Europe/Asia). This noise source is narrowband and strong, making it a
frequent contaminant even under ideal electrode conditions. The notch filter removes this
interference while preserving adjacent neural frequencies. The GUI implements it using
an [IR structure with a quality factor () ~ 30, producing a rejection bandwidth of about

2 Hz around the line frequency.

After filtering removes major noise sources, the GUI can extract simple statistical features

that help evaluate channel quality and signal behavior in real time.

2.2.4 Basic Signal Statistics

Real-time EEG assessment often begins with basic statistical measures that reveal overall
signal stability and channel behavior. Metrics such as the mean and variance provide
quick insight into baseline drift, electrode contact quality, and neural activity. Evaluating

these parameters ensures that the data is suitable for more advanced processing.
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Channel Mean (DC Offset)

A fundamental indicator of signal quality is the mean voltage of each channel, computed
as

1
v

—

where x;[n] is the n-th sample of channel i and N is the evaluation window size. This mean
value, or DC offset, quantifies how far the baseline deviates from zero. The ADS1299 does
not remove DC internally, so any electrode-based offset is digitized alongside the neural
signal. When the 1Hz high-pass portion of the GUI's band-pass filter is applied, this
DC component is effectively suppressed in the timeSeriesFilt output. Large offsets in
timeSeriesRaw may indicate poor electrode contact, drying gel, or hardware instability.
Beyond the mean, understanding how much the signal fluctuates around this baseline

provides further insight into neural activity and noise levels.

Channel Variance

Channel variance measures the degree of fluctuation in the EEG signal around its mean

and is defined in real-time contexts using the population variance:

Although the sample variance (with denominator N — 1) is unbiased for statistical infer-
ence, the population variance is preferred in streaming applications due to its stability
and computational consistency. Squaring the deviations ensures that both positive and
negative fluctuations contribute equally to the overall measurement. A high variance may
indicate strong neural activity, increased noise, or transient artifacts, making it a valuable

parameter for assessing channel reliability.

2.2.5 timeSeriesRaw vs. timeSeriesFilt

The OpenBCI GUI provides access to two representations of the EEG data: timeSeriesRaw

and timeSeriesFilt. The timeSeriesRaw signal, denoted by i[n|, is the reconstructed
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voltage obtained directly from the ADC without any filtering. It contains all frequency
components—including noise—and is useful for diagnosing hardware issues or inspecting
exactly what the ADC captured. In contrast, timeSeriesFilt, represented by rg |1/, is

the version of the signal that has passed through digital band-pass and notch filters.
By default, timeSeriesFilt includes the following digital processing stages:

1. 1-50 Hz band-pass filter: Removes DC drift and slow baseline fluctuations below
1 Hz, as well as high-frequency noise and muscle artifacts above 50 Hz.
2. 60 Hz notch filter (North America) or 50 Hz notch filter (Europe/Asia): Attenuates

power line interference.

Both filters are implemented as Infinite Impulse Response (1IR) structures within the GUI,
providing computationally efficient real-time processing with minimal phase distortion.
This filtered signal is cleaner, easier to interpret, and generally preferred for analysis and

visualization.

Having reconstructed, filtered, and statistically characterized the EEG signal within the
OpenBCI GUI, the processing pipeline now shifts from local computation to real-time data
distribution. At this stage, the central objective is no longer signal transformation but
the efficient transmission of these processed samples to external software environments.
Consequently, the next step focuses on how the system streams continuous EEG data

across the network in a reliable and low-latency manner.
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2.3 UDP Network Streaming

Up to this point, the Cyton hardware and the OpenBCI GUI have collaboratively trans-
formed raw EEG potentials into a cleaned, scaled, and digitally reconstructed signal
suitable for software-level analysis. Having completed the essential steps of amplifica-
tion, digitization, filtering, and statistical evaluation, the processing pipeline now shifts
from local computation to the distribution of data across external systems. In this final
stage of the acquisition chain, the objective is to stream the processed EEG samples to
real-time clients with minimal delay. Efficient EEG streaming requires a network proto-
col capable of supporting continuous, low-latency transmission, particularly in scenarios
where multiple software environments depend simultaneously on the same data stream.
Figure 4 illustrates the complete transmission pathway linking the OpenBCI hardware

and software to the target application in which further processing is performed.

OpenBCI GUI timeSeriesFilt Filtered EEG Format as JSON & Add timestamp

Structured Data

abplication ?gge'\ljves el Network Layer*{ UDP Transmission to Port(s)

[

Your program

Validate & Store Data Quality Check A)Ga Data for Analysis/Display

Figure 4: UDP Flow Chart

As the signal moves beyond local reconstruction and filtering, the OpenBCI system must
ensure that the chosen communication protocol, output stream organization, and packet
structure together support robust and timely data delivery. The following sections explain

why the OpenBCI GUI employs UDP rather than TCP, how it enables simultaneous
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multi-port streaming, and how multi-channel EEG samples are encapsulated within each

transmitted JSON packet.

2.3.1 UDP-Based Multi-Port and Multi-Channel EEG Streaming

Real-time EEG streaming from the OpenBCI GUI requires a protocol capable of deliv-
ering continuous data with minimal delay. Although the Transmission Control Protocol
(TCP) guarantees ordered delivery and error correction, it introduces notable latency due
to connection overhead, congestion control, and retransmission delays. TCP also relies
on a handshake procedure—an initialization step required to establish a reliable connec-

tion—which further increases delay.

In contrast, the User Datagram Protocol (UDP) transmits packets without establishing a
connection, avoids handshake operations entirely—which are the setup exchanges required
by TCP (i.e., the small initial messages sent before data transfer begins)—and achieves
typical latencies of 1-5ms, compared with TCP’s 10-100 ms range. Because EEG data
tolerate occasional packet loss—each packet containing only 40-50 ms of recorded activity
(approximately 10-12 samples at 250 Hz)—brief interruptions affect only narrow time
windows and are acceptable in real-time applications where responsiveness is prioritized
over perfect reliability. For these reasons, UDP is the preferred protocol for smooth,

low-latency EEG streaming.

The OpenBCI GUI also provides a multi-port streaming architecture, enabling up to
three independent UDP streams to operate simultaneously. Each stream can target a
different TP address and port, making it possible to send raw EEG data to Python,
spectral features to Max/MSP, and band-power values to a browser-based interface, all

in parallel and without significant delay.

Each UDP packet is formatted in JSON and contains a timestamp accompanied by an

array of eight EEG channel samples. A typical packet structure appears as follows:

lltypell: lleegll,
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"data": [
[chl_samplel, ch2_samplel, ..., ch8_samplel],

[chl_sample2, ch2_sample2, ..., ch8_sample2],

[chl_sampleN, ch2_sampleN, ..., ch8_sampleN]
1,

"timestamp": 1234567890

Conceptually, the incoming data form an 8 x N matrix:

1[0] xq[1] -+ [N —1]
X 1’2[0] ZEQ[” R ] U\Y — 1] 7
| s[0] @s[l] --- as[N —1]]

where each x;[n] denotes the microvolt-level EEG voltage at channel i and sample index

n.

2.3.2 Network Packet Handling in Real-Time EEG Streaming

After the data have been transmitted, the receiving application must validate, decode,
and integrate each UDP packet into its processing pipeline with minimal overhead. The

receiver first checks whether the incoming payload contains valid JSON:

parse(packet) if valid JSON,
P(packet) =

reject otherwise,

ensuring that malformed packets do not propagate through downstream computations.
Following validation, the application extracts the numerical arrays, converts string values

to floating-point numbers when necessary, and stores them in buffers for real-time analysis.

Because UDP does not guarantee delivery, detecting packet loss is essential. This is
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typically performed by comparing incoming sequence numbers to those expected. The

loss rate is computed as

nNT

A‘]Vex ected T N received
pec 21vVes X 100%’

Loss Rate =
Nexpected

where loss rates below 5% often have negligible impact on real-time EEG interpretation.

Network latency also plays a critical role. Defined by

Z%lat(‘n(ty = Z%r(:(:(‘iv(‘, - tsonda

latency must typically remain below 1-5ms for responsive neurofeedback or BCI applica-

tions. However, the total system latency includes three components:

1. Hardware acquisition delay: ~ 4 ms at 250 Hz sampling.
2. GUI processing delay: typically 1-2ms.

3. Network transmission delay: 1-5ms under normal conditions.

This yields an end-to-end latency of 6-11ms, well below the 20 ms threshold at which

delays become perceptible to users.

Finally, the packet rate determines how frequently data are transmitted. For eight channels
sampled at 250 Hz with 4-byte samples, the data rate is 8 kB/s. Dividing by the packet

size Pyye yields the packet rate:

Rpa(‘ket =

Typical OpenBCI configurations send packets every 40-50 ms (20-25 packets per second),

ensuring smooth and stable streaming.

Having outlined the overall processing pipeline—from analog signal acquisition in the
hardware to digital reconstruction, filtering, and UDP-based transmission at the software
level—we can now summarize the system-specific aspects described in this section. The
OpenBCI Cyton platform integrates precision hardware, digital preprocessing, and real-

time network streaming into a unified EEG acquisition pipeline. At the hardware level,
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the ADS1299 provides eight simultaneous channels with 24-bit resolution, a sampling
rate of f, = 250 Hz, a least-significant-bit voltage resolution of Ajsp = 0.02235 1V, and
exceptionally low input-referred noise, enabling reliable detection of microvolt-level neural
activity. Building on this foundation, the OpenBCI GUI applies essential preprocessing
operations—including a 1-50 Hz band-pass filter and a 50/60 Hz notch filter—to produce

clean and interpretable EEG traces suitable for further analysis.

Once filtered and reconstructed, the data are packaged into JSON structures and streamed
via UDP, a low-latency communication protocol well suited for real-time neurotechnology
applications. With support for simultaneous multi-port transmission and packet rates of
20-25 Hz, the system delivers high-resolution EEG signals efficiently to external clients

for real-time analysis, interaction, or multimodal integration.
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Table 1: OpenBCI Cyton 8-Channel EEG System Specifications

Parameter Symbol Value
Hardware (ADS1299)
Number of Channels C 8
ADC Resolution N 24 bits
Sampling Rate fs 250 Hz
Sampling Period T 4 ms (0.004 s)
Programmable Gain G 1,2, 4,6, 8,12, 24
Default Gain G default 24
Internal Reference Vier 45V
Input Range (after — +Viet
gain)
LSB Step Size (G=24) Arsp 0.02235 pVv
Common-Mode Rejec- CMRR >110 dB (~300,000:1)
tion Ratio
Anti-Aliasing  Filter  foutonr ~125 Hz

Cutoff

Signal Characteristics

Typical EEG Ampli-
tude

Input-Referred Noise

Quantization  Error
Range

— 20-100 pV

— <1 nV (RMS)
e, +0.0112 pV

Digital Processing

Band-Pass Filter (De-
fault)

Notch Filter (USA)

Notch  Filter (Eu-
rope/Asia)

— 1-50 Hz (IIR)

— 60 Hz (IR, Q-30)
- 50 Hz (IR, Q-30)

Network Streaming

Protocol

Max Simultaneous
Streams

Data Format

Typical Packet Rate
Samples per Packet
Data Rate

Network Latency
Total System Latency

— UDP
— 3

— JSON

— 20-25 packets/s

— 10-12 samples (40-50 ms)
— ~8 kB/s

— 1-5 ms (typical) Page 23
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3 Browser-Side EEG Spectral Analysis and
Visualization

The preceding sections have established how cortical potentials are transformed into dig-
ital data streams through hardware acquisition, GUI filtering, and UDP transmission.
At this section, following UDP-to-WebSocket conversion by the Node.js server, the signal
processing chain transitions into the browser environment, where the computationally in-
tensive task of spectral analysis takes place. Here, raw microvolt-level voltage sequences
are transformed into meaningful frequency-domain representations that reveal the under-

lying rhythms of neural activity.

This browser-based pipeline, illustrated in Figure 5 and implemented in javaScript files,
consists of five interconnected stages. The process begins with WebSocket-based data
reception, where incoming JSON packets are parsed and validated before individual EEG
samples are extracted. These samples are then stored in a circular buffer that maintains
temporal continuity while managing memory efficiently. Critically, the system imple-
ments tempo-adaptive windowing, wherein analysis segment durations are dynamically
determined by musical tempo and time signature—enabling precise temporal alignment
between neural responses and musical events. Once a complete window is available, the
discrete Fourier transform decomposes the time-domain signal into frequency components,
from which neurophysiologically relevant bands (delta, theta, alpha, beta, gamma) are
extracted. Finally, band-specific power calculations drive real-time canvas-based visual-

ization.

Importantly, each stage depends on the successful completion of the preceding one, form-
ing a tightly coupled processing chain that must balance computational efficiency with
robustness to network variability. The following subsections examine each component in
detail, using the section headlines that correspond to the nodes in Fig. 4 for traceabil-
ity. This structure illustrates how theoretical signal-processing principles translate into

practical, browser-based implementations.
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Message H Parse Value H Update Display H Extract Sample
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Figure 5: Browser-side EEG processing pipeline

3.1 Data Reception and Parsing

The yellow nodes in the Fig. 4 illustrates reception and parsing of the data in which
the browser-side processing pipeline begins with establishing a reliable communication
channel between the server and the web application to transmits this data for further
processing. This initial stage demands careful attention to asynchronous event handling
- where events are processed one at a time, in order, and each event must fully complete
before the next one begins, data validation, and error recovery to ensure subsequent
stages receive well-formed, temporally consistent data. As illustrated in the flowchart,
this comprises four sequential operations: WebSocket message reception, value parsing,

display updating, and sample extraction.

3.1.1 WebSocket Message

Modern real-time web applications require bidirectional, low-latency communication, which
the WebSocket protocol provides through persistent connections. Unlike traditional HT'TP
request-response cycles, WebSocket allows the server to push data immediately upon avail-

ability. The browser initiates a connection to ws://localhost:8081, creating a direct
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channel for continuous EEG packet transmission.

Because EEG data arrive at 250 Hz (every 4 milliseconds), the system cannot block on
any operation. Each incoming message triggers an onmessage callback that processes the
packet and immediately returns control to the event loop, ensuring subsequent packets
arrive without delay. The implementation includes onerror and onclose handlers that
detect connection failures and attempt automatic reconnection, maintaining continuous

data flow despite network disruptions.

3.1.2 Parse Value

Once a WebSocket message fires, the raw string undergoes conversion to a JavaScript ob-
ject via JSON.parse (). The expected packet format consists of three fields: a type identi-
fier ("eeg"), a data array containing multichannel samples as nested arrays [[chl,...,ch8],

...], and a timestamp.

Network transmission is inherently unreliable. Consequently, parsing is wrapped in a
try-catch block to intercept JSON syntax errors. If parsing fails, the packet is discarded
with a logged error, but execution continues. Successfully parsed packets undergo struc-
tural validation: the system verifies expected fields exist, that type matches "eeg", and
that the data array contains eight-element subarrays. Packets failing these checks are

discarded, ensuring only well-formed data propagate through the pipeline.

3.1.3 Update Display

Beyond accepting and validating data, the reception stage provides immediate visual
feedback. As each packet is successfully parsed, the application extracts current microvolt
values for all eight channels and updates corresponding HTML elements. This real-time
display confirms correct data flow, allows operators to monitor signal quality, and provides

color-coded indicators that flag abnormal conditions.

Channels exhibiting voltages near ADC saturation limits (187 pV) are highlighted in red,

signaling potential clipping artifacts. Conversely, channels showing stable signals appear
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in green, confirming optimal recording conditions. This immediate feedback ensures data

quality before committing computational resources to analysis.

3.1.4 Extract Sample

Having validated the packet and updated the display, the system extracts individual EEG
samples for buffering. The data field is a two-dimensional array: the first dimension in-
dexes time (typically 10-12 samples per packet) and the second indexes channels (eight per
sample). Access requires double-indexing: data[sampleIndex] [channelIndex]. Before
buffering, the system performs data type verification using parseFloat () to ensure nu-
meric format. The validated sample then passes to the circular buffer’s insertion method,

completing the first stage of the browser-side processing pipeline.

3.2 Circular Buffer Management

Circular buffer is represented with the single brown node in Fig. 3 as the second stage in
signal processing. Following successful extraction of validated EEG samples from incoming
WebSocket packets, the processing pipeline transitions to data storage. At this point, the
system employs a circular buffer architecture that maintains a fixed-size window of recent
samples while automatically discarding older data. This approach balances two competing
requirements: providing sufficient temporal context for spectral analysis while ensuring

that memory consumption remains constant regardless of recording duration.

3.2.1 Store in Array

The circular buffer is implemented as a fixed-length JavaScript array initialized at system
startup with predetermined capacity. This capacity is determined by the maximum win-
dow size required for spectral analysis, which depends on the slowest musical tempo the
system expects to encounter. For instance, at 60 beats per minute with 4 /4 time signature,
one measure spans 4 seconds, corresponding to 1000 samples at 250 Hz sampling rate. To
accommodate slower tempos and provide margin for sliding window operations, typical

implementations allocate buffers holding 2000-4000 samples, representing 8-16 seconds of
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continuous recording.

The buffer operates on a write-pointer mechanism that tracks the current insertion po-
sition. When a new sample arrives from the extraction stage, it is written to the array
index indicated by the write pointer, which then increments by one. Critically, when the
write pointer reaches the end of the array, it wraps around to index zero rather than
expanding the array. This wraparound behavior—achieved through modulo arithmetic
where writePointer = (writePointer + 1) 7 bufferSize—gives the circular buffer
its name and memory-efficient properties. As new samples continuously overwrite old
samples, the buffer always contains the most recent N samples, where N equals buffer

capacity.

Reading data from the circular buffer requires careful index management to maintain tem-
poral ordering. When the spectral analysis stage requests a window of M samples, the
system must extract M consecutive samples accounting for the possibility that these sam-
ples span the wraparound boundary. This is accomplished by calculating a read-start
index as readStart = (writePointer - windowSize + bufferSize) % bufferSize,
then extracting samples sequentially with wraparound handling. For example, if the
write pointer sits at index 150 in a 2000-sample buffer and 200 samples are requested, the

system retrieves samples from indices 1950-1999 followed by 0-149.

The implementation maintains temporal integrity through synchronized operations. Be-
cause JavaScript executes in a single-threaded event loop, race conditions between writing
new samples and reading existing samples do not occur. However, the system must en-
sure that read operations never request more samples than the buffer contains. This
is enforced by tracking the total number of samples received since initialization: until
this count exceeds the requested window size, spectral analysis is deferred, preventing

attempts to analyze incomplete data.

Memory efficiency represents the primary advantage of this architecture. By maintaining
fixed allocation, the buffer avoids garbage collection overhead associated with dynamic ar-

ray resizing and eliminates memory leaks that could degrade performance during extended

Page 28



Oguzhan Tugral EEG Processing Architecture

recording sessions. The constant memory footprint enables reliable real-time operation, as
processing latency remains predictable regardless of session duration. Following successful
storage, samples remain available for retrieval when the tempo-adaptive windowing stage

determines that sufficient data have accumulated for spectral analysis.

3.3 Tempo-Adaptive Windowing

One of the distinctive features of this system is the synchronization of EEG analysis win-
dows with musical tempo, enabling multimodal correlation between neural dynamics and
musical structure. This part of the program is illustrated with pink nodes in Fig. 3. Tra-
ditional EEG spectral analysis employs fixed-duration windows that bear no relationship
to external stimuli. In contrast, the present implementation dynamically adjusts window
duration to align precisely with musical measures, ensuring that each spectral analysis
captures neural activity corresponding to complete musical phrases. This tempo-adaptive
approach is essential for investigating how brain rhythms entrain to musical rhythms, a

central question in music cognition research.

3.3.1 Tempo and Time Signature Retrieval

Before calculating appropriate window sizes, the system must obtain current musical
tempo and time signature information. This information originates from MIDI data
processed by the the javaScript module, which tracks musical timing in real-time as MIDI
events arrive from Ableton Live. The counter.js module maintains two critical variables:
currentTempo (expressed in beats per minute) and timeSignature (expressed as a string
such as "4/4" or "3/4"). These values are exposed as global JavaScript variables accessible

to the EEG processing pipeline.

The tempo retrieval mechanism operates continuously, querying the script at regular in-
tervals—typically every 100 milliseconds—to detect tempo changes that may occur during
performance. When MIDI data indicate a tempo change, the counter.js module updates
its internal state, and the next query by the EEG pipeline retrieves the new value. This re-

sponsiveness ensures that window calculations remain synchronized even during prepared
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accelerandi, ritardandi, or abrupt tempo shifts common in expressive musical performance.

3.3.2 Window Size Calculation

Having obtained tempo and time signature, the system calculates the appropriate window
duration corresponding to user selected musical measure number. The fundamental rela-
tionship derives from the definition of tempo: in case of selected 1 bar duration, beats per
minute indicates how many beats occur in 60 seconds, so the duration of one beat equals
60/tempo seconds. The time signature’s numerator specifies how many beats comprise

one measure. Therefore, one measure spans (60/tempo) x beatsPerMeasure seconds.

To convert this temporal duration to sample count, the formula multiplies by the sampling
rate: windowSize = (60 / tempo) x beatsPerMeasure x samplingRate. For exam-
ple, at 120 beats per minute with 4/4 time signature and 250 Hz sampling rate, the
calculation proceeds as follows: one beat lasts 60/120 = 0.5 seconds, one measure con-
tains 4 beats spanning 2 seconds, and 2 seconds at 250 Hz yields 500 samples. Similarly,

at 60 BPM with 3/4 time, one measure spans 3 seconds corresponding to 750 samples.

Because array indices must be integers, the calculated window size undergoes rounding
to the nearest whole number. Additionally, the system enforces minimum and maximum
constraints to prevent pathological cases. The minimum constraint—typically 250 sam-
ples (1 second)—ensures sufficient frequency resolution for distinguishing EEG bands,
as frequency resolution equals samplingRate/windowSize. Windows shorter than 250
samples would yield resolution coarser than 1 Hz, insufficient for separating theta (4-8
Hz) from alpha (8-13 Hz) bands. The maximum constraint—typically equal to buffer
capacity—prevents requests for more samples than the circular buffer contains. When

calculated windows exceed these bounds, they are clipped to the nearest valid value.

3.3.3 Window Boundary Detection

Once the appropriate window size is determined, the system must decide whether suf-
ficient data have accumulated in the circular buffer to perform analysis. This decision

occurs through a boundary detection check that compares the total number of samples
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received against the calculated window size. The check employs a simple conditional: if
(totalSamplesReceived >= windowSize), then proceed to spectral analysis; otherwise,

continue buffering.

This decision point appears in the flowchart as a diamond-shaped conditional box labeled
"Data At Calculated Window Boundary?" with two branches. The "No" branch loops
back to the storage stage, allowing additional samples to accumulate until the condition
is satisfied. The "Yes" branch proceeds forward to segment processing and DFT compu-
tation. This gating mechanism ensures that spectral analysis never attempts to process

incomplete windows, which would produce invalid frequency-domain representations.

The boundary detection operates continuously as new samples arrive. After each success-
ful DFT computation, the system does not reset the sample counter but instead continues
accumulating samples, checking the boundary condition with each new arrival. This en-
ables sliding window analysis wherein successive windows overlap substantially, providing
high temporal resolution of spectral dynamics while maintaining alignment with musical

structure.

3.4 Spectral Analysis via Discrete Fourier Transform

When the buffer reaches the calculated window boundary, the system performs frequency-
domain analysis to extract spectral features corresponding to established EEG frequency
bands. This transformation from time-domain voltage sequences to frequency-domain
power spectra constitutes the computational core of the entire pipeline, revealing the
rhythmic oscillations that characterize neural activity. While raw EEG data appear as
chaotic voltage fluctuations when plotted over time, spectral decomposition exposes the
underlying periodic components—delta, theta, alpha, beta, and gamma rhythms—that

reflect distinct neurophysiological states and cognitive processes.
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3.4.1 Process Segment

Before applying the Fourier transform, the system extracts the appropriate segment from
the circular buffer and applies preprocessing operations that improve spectral quality.
Segment extraction employs the read-index calculation described previously, retrieving
windowSize consecutive samples while accounting for buffer wraparound. These samples
are copied into a separate processing array to prevent interference from ongoing write

operations.

The extracted segment typically undergoes windowing to reduce spectral leakage—an arti-
fact that occurs when the signal at window boundaries exhibits discontinuities. Abruptly
truncating a sinusoidal signal creates artificial high-frequency components that contami-
nate the spectrum. To mitigate this, the system applies a window function that gradually
attenuates samples toward the segment boundaries. The Hann window is commonly em-

ployed, defined as

2mn
N -1

w[n]:0.5—0.5cos< ), n=0,1,...,N — 1.

Multiplying each sample by its corresponding window coefficient produces smooth tran-
sitions to zero at both boundaries, eliminating discontinuities while preserving central

samples at full amplitude.

Additionally, the segment undergoes detrending to remove DC bias. EEG signals often
contain slow voltage drifts unrelated to neural oscillations—arising from electrode po-
larization, amplifier offsets, or movement artifacts. These drifts manifest as large DC
components (0 Hz) in the spectrum that can distort power calculations. Detrending typ-
ically involves computing the segment’s mean value and subtracting it from all samples,
centering the signal around zero. This simple linear detrending effectively removes the

DC component without affecting higher-frequency neural rhythms of interest.
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3.4.2 Compute DFT

The Discrete Fourier Transform decomposes the preprocessed time-domain segment into

its constituent frequency components. Mathematically, the DFT is defined as:

X[k] = z[n] - eI2mkn/N (1)

where x|n| represents the input samples, N is the window length, k indexes frequency
bins from 0 to N-1, and j is the imaginary unit. Each frequency bin k corresponds to a
specific frequency f = k-fs/N, where fs is the sampling rate (250 Hz). The exponential
term can be expanded using Euler’s formula as cos(2kn/N) - j-sin(2kn/N), yielding real

and imaginary components.

In JavaScript, this is implemented through nested loops. The outer loop iterates over
frequency bins k, while the inner loop accumulates the sum over time samples n. For each

bin, the algorithm maintains separate accumulators for real and imaginary parts:
Reallk] = x[n|-cos(2kn/N) Imaginary[k| = x[n|-sin(2kn/N)

This naive implementation exhibits O(N?) computational complexity: for each of N fre-
quency bins, N multiply-accumulate operations are performed, totaling N2 operations. For
typical window sizes of 500-1000 samples, this corresponds to 250,000-1,000,000 operations
per transform. Modern JavaScript engines execute these operations in 5-10 milliseconds
on contemporary hardware, acceptable for real-time performance. However, production
implementations often employ Fast Fourier Transform (FFT) algorithms—such as the
Cooley-Tukey radix-2 FFT—that reduce complexity to O(N log N), providing substantial

speedup for larger windows.

Once the DFT is computed, the magnitude spectrum is calculated from the real and
imaginary components: |X[k]| = sqrt(Real[k]? + Imaginary|k]?). The magnitude spec-
trum represents the amplitude of each frequency component, with units of microvolts.

The power spectrum—more commonly used in EEG analysis—is obtained by squaring
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the magnitude: Power[k] = |X[k]|2. Power has units of microvolts squared and directly

represents the energy contribution of each frequency.

The frequency resolution of the DFT equals f = fs/N. For a 500-sample window at 250
Hz, resolution is 0.5 Hz, meaning each bin spans 0.5 Hz. This resolution determines the
ability to distinguish nearby frequencies: narrow EEG bands like alpha (8-13 Hz) require
sufficient resolution to separate them from adjacent theta (4-8 Hz) and beta (13-30 Hz)
bands. Longer windows provide finer frequency resolution but reduce temporal resolution,

embodying the fundamental uncertainty principle of time-frequency analysis.

3.4.3 Extract Bands

Having computed the power spectrum, the system extracts neurophysiologically relevant
frequency bands. EEG research has established five canonical bands, each associated with

distinct cognitive and behavioral states:

Delta (0.5-4 Hz) dominates during deep sleep and reflects unconscious processes. Elevated
delta in waking states may indicate cortical lesions or pathological conditions. Theta (4-8
Hz) appears during meditation, creative thinking, and REM sleep, reflecting memory con-
solidation and emotional processing. Alpha (8-13 Hz) characterizes relaxed wakefulness
with closed eyes, often called the "idling rhythm" of the visual cortex. Alpha suppression
occurs during visual processing and mental effort. Beta (13-30 Hz) accompanies active
thinking, focused attention, and anxiety, reflecting cortical activation. Gamma (30-50
Hz) supports high-level cognition, sensory binding, and consciousness itself, though its

interpretation remains debated.

To extract band power, the system maps frequency ranges to DFT bin indices. The bin
corresponding to frequency f is k = round(f-N/fs). For delta (0.5-4 Hz) in a 500-sample
window at 250 Hz, the bin range is k = 1 to 8. The system iterates over this range,
accumulating power values: DeltaPower = Power|k| for k = 1 to 8. This sum represents
the total spectral energy within the delta band. The same procedure applies to all bands,

yielding five scalar values representing the relative strength of each rhythm.
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Band power can be expressed in absolute terms (microvolts squared) or normalized. Rela-
tive band power divides each band by the total power across all bands, yielding proportions
that sum to 1.0. This normalization reduces inter-subject variability and facilitates com-
parisons. Logarithmic scaling (10-log(power)) converts power to decibels, compressing the

dynamic range and emphasizing relative changes.

3.4.4 Sliding Windows

Rather than analyzing a single window and stopping, the system employs sliding window
analysis to track temporal evolution of spectral features. After computing band powers

for one window, the system advances by a hop size—typically 50

This sliding window approach generates a time-frequency representation wherein band
powers are computed at regular intervals (every 1 second for 250-sample hops at 250 Hz).
The resulting power trajectories reveal how neural rhythms wax and wane in response
to musical events, task demands, or spontaneous fluctuations. For instance, alpha power
may decline during eyes-open periods and recover during rest, while beta may surge during

cognitive effort.

The trade-off between temporal and frequency resolution is fundamental. Longer windows
yield finer frequency resolution but coarser temporal localization, while shorter windows
provide better time resolution at the cost of frequency precision. The tempo-adaptive
windowing approach navigates this trade-off by selecting window durations that align
with musical structure, ensuring that each analysis window captures meaningful musical

units while maintaining adequate frequency resolution for band separation.

3.5 Power Calculation and Canvas Visualization

The final stage computes band-specific power metrics and renders real-time visualizations
on an HTML5 canvas element, providing immediate visual feedback that enables operators
to monitor neural dynamics as they unfold. This visualization confirms that spectral

analysis functions correctly, allows quality assessment of ongoing recordings, and provides
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intuitive representations of complex frequency-domain data.

3.5.1 Select Last Window

Before computing displayable power values, the system must select the appropriate anal-
ysis window. In sliding window implementations that generate multiple overlapping anal-
yses per second, the visualization displays the most recent complete window to maintain
temporal coherence with ongoing neural activity. The system maintains a queue of com-
pleted spectral analyses, each tagged with a timestamp indicating when the corresponding

EEG segment was recorded.

Window selection prioritizes recency while avoiding incomplete analyses. When the
visualization update cycle triggers—synchronized with the browser’s refresh rate via
requestAnimationFrame—the system queries the analysis queue for the newest entry.
If multiple analyses completed since the last frame, only the most recent is selected, pre-
venting visualization lag. This ensures that displayed power values reflect current brain

state rather than outdated data.

During initial startup or following tempo changes, the analysis queue may be temporarily
empty while the system accumulates sufficient samples for the new window size. To
prevent visualization artifacts, the system retains the previous frame’s display until new

analyses become available, maintaining smooth visual continuity.

3.5.2 Calculate Power Bands

Having selected the target window, the system computes summary statistics for each
frequency band. Although spectral analysis already calculates power for each DFT bin,
visualization requires aggregating these bins into five scalar values. The fundamental

calculation sums power across bins comprising each band:

Prana = Z | X[k

keband

Raw power values often span several orders of magnitude, complicating visualization.

Page 36



Oguzhan Tugral EEG Processing Architecture

To address this, the system typically applies logarithmic scaling, converting power into

decibels:

Pag = 101log;,(P).

This compression maps the wide dynamic range of EEG power — varying from 1072 to
102 uV? — into a manageable scale suitable for bar chart display. Decibel scaling also

aligns with human perception, which tends to be logarithmic.

Alternatively, relative band power normalizes each band by total power:

B band
Zall bands 'S band

P, relative —

This yields proportions summing to 1.0, facilitating comparisons between bands and re-
ducing sensitivity to absolute amplitude variations caused by electrode impedance changes.
The choice depends on research goals: absolute power preserves overall signal strength

information, while relative power emphasizes spectral energy distribution.

3.5.3 Draw Canvas

Visualization employs the HTML5 Canvas API, which provides a programmable drawing
surface for real-time graphics. The canvas element exists as a DOM object with specified
dimensions, and JavaScript accesses it through a 2D rendering context exposing drawing

primitives.

The rendering process begins by clearing the previous frame using context.clearRect (),
erasing all prior graphics. The coordinate system origin sits at the top-left corner, with
X increasing rightward and y downward. To display five frequency bands as a bar chart,
the system divides canvas width by five, allocating equal horizontal space to each band.
Bar height is computed by mapping power values—after logarithmic scaling or normal-

ization—to pixel coordinates through linear interpolation.
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Color coding enhances interpretability: delta appears in blue, theta in green, alpha in
yellow, beta in orange, and gamma in red. This rainbow-like progression leverages familiar
visual metaphors. Each bar is drawn using context.fillRect(x, y, width, height),
with parameters positioning and sizing the rectangle. Text labels identifying bands and

numerical values are rendered using context.fillText ().

The rendering cycle synchronizes with the browser’s refresh rate—typically 60 Hz—through
requestAnimationFrame (), which schedules updates to coincide with the display’s ver-
tical sync. This prevents screen tearing and ensures smooth animation. The visualiza-
tion callback recursively calls requestAnimationFrame (), creating a continuous render-
ing loop that updates as new spectral analyses complete. When band powers change
gradually, the visualization exhibits fluid motion; when they shift abruptly—during eyes-
open to eyes-closed transitions—the bars jump accordingly, providing immediate visual

feedback of neural state changes.

3.6 Summary of Browser-Side Pipeline

This section has described the complete browser-side EEG processing pipeline, which
transforms UDP-transmitted JSON packets into real-time frequency-domain visualiza-
tions suitable for multimodal music-brain research. The pipeline comprises five sequential
stages, each addressing a distinct aspect of signal processing while maintaining tight in-

tegration with the overall system architecture.

The data flow begins with WebSocket message reception and JSON parsing, where in-
coming packets undergo validation and error handling to ensure temporal consistency.
Extracted samples then enter a circular buffer employing wraparound write-pointer man-
agement, maintaining fixed memory allocation while providing access to recent history.
Critically, the tempo-adaptive windowing stage synchronizes analysis segments with mu-
sical structure by dynamically calculating window sizes based on MIDI-derived tempo and
time signature information retrieved from counter.js. This synchronization represents the

system’s key innovation, enabling precise temporal alignment between neural dynamics
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and musical events—a capability absent in conventional EEG analysis workflows.

Once sufficient samples accumulate, the spectral analysis stage performs discrete Fourier
transformation, decomposing time-domain voltage sequences into frequency-domain power
spectra. The naive O(N?) JavaScript implementation executes in 5-10 milliseconds for typ-
ical 500-1000 sample windows, meeting real-time performance requirements. Frequency
band extraction then aggregates DF'T bins into neurophysiologically relevant delta, theta,
alpha, beta, and gamma bands, each reflecting distinct cognitive and behavioral states. Fi-
nally, the visualization stage renders band powers as color-coded bar charts using HTML5

Canvas API, synchronized with display refresh through request AnimationFrame.

This entirely browser-based implementation demonstrates that sophisticated real-time
signal processing traditionally confined to specialized environments like MATLAB can
be accomplished using standard web technologies. The pipeline’s modular architecture
facilitates future extensions—such as incorporating FF'T libraries for computational ac-
celeration, implementing additional spectral features like spectral entropy or phase co-
herence, or expanding visualization capabilities to include time-frequency spectrograms.
Integrated with the hardware acquisition and server components described previously,
this browser-side processing completes the end-to-end pathway from cortical potentials to

actionable spectral representations.
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