
Real-Time Roman Numeral Analysis
from Live MIDI Performance Using a
Distributed Multimodal Architecture

Oğuzhan Tuğral

Abstract

Automatic Roman numeral analysis is an important area in music information

retrieval. While recent deep learning approaches have advanced the field, real-time

harmonic analysis for MIDI input and live performance remains underexplored. Ex-

isting systems primarily focus on offline analysis of symbolic or audio data. Real-time

settings introduce computational and latency constraints, and current tools for live

MIDI processing do not provide comprehensive Roman numeral annotations. This

work presents a three-tier distributed architecture integrating Python-based back-

end processing with tempo-adaptive temporal buffers, WebSocket bidirectional com-

munication protocols, and JavaScript-based frontend analysis implementing pitch

class arithmetic, interval vector computation, and comprehensive Roman numeral

lookup algorithms. The system successfully processes MIDI input streams in real

time, identifying chord qualities, inversions, diatonic and chromatic functions, and

secondary dominants with latency characteristics suitable for live performance. A

browser-based interface provides immediate synchronized visual feedback. The in-

tegrated pipeline enables harmonic analysis for both pre-recorded MIDI files and

live keyboard performance, making real-time Roman numeral analysis accessible for

pedagogical, compositional, and music cognition research applications.

November 16, 2025

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

Contents

1 Introduction 2
1.1 Background . 2
1.2 Problems . 4

2 Automated Annotation of Roman Numeral Harmony 5
2.1 Input Layer and External Systems . 6

2.1.1 MIDI Input . 6
2.1.2 External Systems (OSC / UDP) . 7

2.2 Backend Layer (Python) . 8
2.2.1 Handle MIDI Input . 8
2.2.2 Maintain Temporal Pitch Buffers 8
2.2.3 Communicate via OSC / UDP . 10
2.2.4 Coordinate WebSocket Messaging 10

2.3 Transport Layer (WebSocket) . 10
2.3.1 Broadcast State Updates (Backend → Frontend) 11
2.3.2 Receive Configuration Changes (Frontend → Backend) 11

2.4 Frontend Analysis Layer . 12
2.4.1 Receive State Broadcasts . 12
2.4.2 Interval Arithmetic on Pitch Classes 13
2.4.3 Pattern Match Chord Templates 16
2.4.4 Lookup Roman Numeral Labels . 17
2.4.5 Render Harmonic Analysis UI . 21

3 Conclusion 23

Appendix 25

A Combinatorial Possibilities in 12-Tone Diatonic and Chromatic Music 25
A.1 Derivation of Pitch Class Set Combinations 26

Page 1

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

1 Introduction

Automatic Roman numeral analysis (RNA) has progressed through statistical, rule-based,

and deep learning approaches; however, real-time harmonic interpretation—especially

from live MIDI input—remains largely unexplored. More specifically, existing systems

achieve moderate accuracy on offline symbolic or audio data, yet they struggle with the

latency, consistency, and contextual demands of interactive performance. Given these

challenges, this work presents an integrated real-time framework combining MIDI acqui-

sition, tempo-adaptive backend processing, bidirectional WebSocket communication, and

frontend harmonic analysis. Within this unified structure, the system performs interval

arithmetic, chord-quality detection, inversion and chromatic evaluation, and secondary-

dominant classification, thereby providing synchronized Roman numeral feedback suitable

for live performance and pedagogical use. After this present outline of the motivation and

general scope of the system, the following subsection contextualizes this study within the

broader research landscape.

1.1 Background

Automatic Roman numeral analysis (RNA) occupies a central place in music informa-

tion retrieval (MIR), aiming to annotate harmonic function across symbolic and audio

data. While early work leaned on statistical heuristics and rule-based systems, recent

developments have increasingly turned toward deep learning architectures. In this regard,

methods based on convolutional–recurrent neural networks (CRNNs) and graph neural

networks (GNNs) have shown notable improvements by capturing both local harmonic

cues and broader structural context (Fricke et al., 2024; Karystinaios & Widmer, 2023;

Micchi et al., 2020). In parallel, the adoption of richer modeling strategies—such as full

pitch spelling and multitask prediction of root, inversion, quality, and local key—has fur-

ther expanded model expressiveness and interpretability (Karystinaios & Widmer, 2023;

Micchi et al., 2020).

Progress has also been shaped by the availability of curated datasets. Collections like TAV-

Page 2

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

ERN and various aggregated meta-corpora have enabled wider evaluation and training,

though the field continues to grapple with limited stylistic diversity and inconsistencies

in annotation practice (Devaney et al., 2015; Micchi et al., 2020; Tymoczko et al., 2019).

Moreover, ongoing standardization efforts, including Harmalysis and RomanText, aim to

alleviate these issues by promoting interoperable formats and more uniform annotation

methodologies (López & Fujinaga, 2020; Tymoczko et al., 2019).

In terms of open-source RNA tools and current performance limitations, a wide range

of toolkits and research frameworks now support automatic Roman numeral analysis,

spanning CRNN-based models, GNN architectures, and context-free grammar parsers

(Fricke et al., 2024; Karystinaios & Widmer, 2023; López & Fujinaga, 2020; Micchi et al.,

2020; Tymoczko et al., 2019). AugmentedNet, for example, has been extended to operate

directly on audio and MIDI data, achieving performance comparable to approaches that

rely solely on symbolic input (Fricke et al., 2024). Nevertheless, even the most advanced

systems typically attain only about 43% accuracy on challenging benchmarks, highlighting

a significant gap between automated methods and expert human analysis (Micchi et al.,

2020).

Beyond expert–annotated data, real-time automatic RNA for MIDI files and live per-

formances remains particularly underexplored. Although tools such as Notochord and

Scramble support real-time MIDI processing, generation, and corrective feedback, their

focus lies in performance modeling, improvisation, or error detection rather than deliv-

ering robust harmonic interpretations (Marinov, 2020; Privato et al., 2022; Shepardson

et al., 2022). Thus, despite their technical strengths, these systems do not yet provide

expert-quality Roman numeral annotations in real time. Having established the back-

ground and current limitations, the next subsection outlines the specific problems that

motivate the present research.

Page 3

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

1.2 Problems

In terms of RNA accuracy and data constraints, several persistent limitations contribute

to this gap. First, harmonic analysis is intrinsically challenging: establishing ground-truth

annotations often involves ambiguity and subjective judgment, leading to inconsistencies

across datasets that undermine model reliability (Devaney et al., 2015; Micchi et al., 2020).

Compounding this issue is the limited availability of sufficiently large and stylistically

diverse annotated corpora, which restricts the generalizability of supervised models across

varied repertoires and performance conditions (Devaney et al., 2015; Jamshidi et al., 2024;

Micchi et al., 2020).

Real-time settings introduce additional constraints. Harmonic predictions must be pro-

duced within a few milliseconds to remain musically coherent, placing considerable com-

putational and latency demands on existing architectures (Marinov, 2020; Privato et al.,

2022; Shepardson et al., 2022). At the same time, current systems for transcription,

harmonic analysis, and real-time interaction tend to operate independently, leaving a

noticeable absence of integrated, end-to-end frameworks capable of delivering seamless

harmonic feedback (Benetos et al., 2019; Jamshidi et al., 2024; Marinov, 2020).

Although recent research—supported by deeper representations, expanded datasets, and

improved learning strategies—has advanced automatic RNA, these developments have

not yet translated into expert-level, real-time performance whether for MIDI or real-

time input (Fricke et al., 2024; Jamshidi et al., 2024; Karystinaios & Widmer, 2023;

Marinov, 2020; Micchi et al., 2020). Consequently, this remaining challenge offers a

valuable direction for my work, which aims to address this need by introducing a practical,

real-time framework for Roman numeral analysis capable of supporting both MIDI file

playback and live performance. By emphasizing efficient representations, low-latency

processing, and harmonic modeling, the system moves toward achieving expert-level real-

time RNA in practical musical settings. With these problems articulated, the following

section turns to the design of the proposed system and its implementation.

Page 4

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

2 Automated Annotation of Roman Numeral

Harmony

As its first and foremost function, traditional harmonic analysis requires recognizing

pitch combinations, identifying chord qualities, interpreting their functions within an es-

tablished tonal framework, and articulating these relationships through Roman numeral

notation—a standardized symbolic language fundamental to Western music theory and

practice. The proposed system in the present work implements a real-time Roman nu-

meral analysis framework designed to operate seamlessly in both MIDI playback and live

performance contexts, which continuously ingests live and streamed MIDI data, extracts

and organizes recent pitch information, identifies harmonic structures, interprets them

within a defined tonal framework, and delivers dynamic Roman numeral analysis through

an interactive visual interface.

To clarify how these components interact, Fig. 1 summarizes the complete real-time anal-

ysis pipeline. As a preconditional level, Layer 0 – 2.3 Input Layer and External Systems

receives live MIDI performance and other control data via OSC/UDP from Digital Audio

Workstations (DAWs), hardware, or controllers, transforming raw performance input into

timestamped MIDI events. Layer 1 – 2.4 Backend Layer (Python) handles these events,

converts notes to pitch classes, maintains tempo-adaptive temporal buffers, manages OS-

C/UDP networking, and coordinates WebSocket messaging to and from the browser.

Then, Layer 2 – 2.5 Transport Layer (WebSocket) provides the bidirectional messaging

channel: it carries configuration changes from the frontend to the backend and broadcasts

state updates—including pitch buffers, tempo, meter, and voice information—back to the

browser. Finally, Layer 3 – 2.6 Frontend Analysis Layer receives these broadcasts, per-

forms interval arithmetic and chord-template matching, computes Roman numeral labels,

and renders the harmonic analysis UI in real time. Each node and sub-bullet corresponds

to the numbered subsections 2.3–2.6., which will be discussed in detail in the following

sections of the present work.

Page 5

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

Figure 1: General Work Flow

2.1 Input Layer and External Systems

As a precondition, the input layer serves as the primary interface between external musi-

cal performance devices and the system’s processing architecture. This layer establishes

communication channels, receives MIDI data streams, and prepares incoming information

for subsequent harmonic analysis operations. Thus, it consists of two functions: MIDI

input and OSC/UDP protocols as external systems.

2.1.1 MIDI Input

The MIDI input subsystem receives real-time musical performance data from external

sources, including digital audio workstations, hardware synthesizers, and MIDI controllers.

Page 6

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

As a conceptual bridge to the next section, it is worth noting that communication occurs

through Open Sound Control (OSC) and the User Datagram Protocol (UDP). Each MIDI

message contains three primary components: pitch information encoded as note numbers

(0–127), velocity data representing performance dynamics, and timing metadata. The

system processes these incoming messages at millisecond-level temporal resolution, ensur-

ing that rapid performance gestures and dense musical textures are accurately captured

for downstream harmonic analysis.

Table 1: MIDI Message Components

Component Range Description
Note Number 0–127 Pitch representation

Velocity 0–127 Performance dynamics
Timestamp Milliseconds Event timing

2.1.2 External Systems (OSC / UDP)

Open Sound Control (OSC) and the User Datagram Protocol (UDP) function as exter-

nal systems that communicate with the architecture, providing the low-latency channels

through which real-time musical data is transmitted. OSC offers structured message for-

matting with type-tagged arguments, enabling expressive and semantically rich parameter

passing. UDP, by contrast, provides lightweight packet transmission without connection

overhead or guaranteed delivery. Consequently, choosing between these protocols de-

pends on the programming requirements of the system, particularly in contexts where

millisecond-level latency is critical. External sources—including Ableton Live, Max/MSP,

and hardware MIDI interfaces—transmit performance data through these channels. The

system binds to specific network ports, typically port 8000 for OSC and port 9000 for UDP,

and listens continuously for incoming musical event streams from connected devices. Once

these external systems are configured, the three essential layers of the program become

active.

Page 7

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

2.2 Backend Layer (Python)

The backend layer, implemented in Python, serves as the system’s central processing en-

gine, receiving MIDI data from external sources, validating and transforming incoming

messages, maintaining temporal buffers of pitch events, managing bidirectional commu-

nication protocols, and coordinating state distribution to frontend clients for real-time

harmonic analysis. In the following subsections, I present the details of each of these

steps, thereby establishing the foundation upon which the transport and analysis layers

operate.

2.2.1 Handle MIDI Input

The backend receives normalized MIDI messages from external sources such as Ableton

Live and Max/MSP, performing initial validation and preprocessing operations. Invalid

or malformed messages are filtered to ensure system stability. The subsystem converts

MIDI note numbers into pitch-class representations using modulo-12 arithmetic, where

each pitch class p ∈ {0, 1, 2, . . . , 11} denotes a chromatic position independent of octave.

Throughout this process, the handler monitors incoming data rates and dynamically ad-

justs processing parameters to maintain real-time performance across varying musical

textures and note densities. These processed MIDI notes then become the input samples

stored within tempo- and time-signature–adaptive buffers used for subsequent harmonic

analysis. With MIDI data now validated and normalized, the system transitions naturally

into the task of organizing these events within temporal structures suitable for harmonic

interpretation.

2.2.2 Maintain Temporal Pitch Buffers

The backend implements circular buffer structures to store recent pitch events for har-

monic analysis over configurable time windows. These buffers operate as first-in-first-out

(FIFO) queues where incoming pitch events displace the oldest stored values upon reach-

ing capacity. Critically, the system converts unordered FIFO arrivals into temporally

ordered lists, ensuring chronological coherence for downstream harmonic analysis (e.g.,

Page 8

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

bass and soprano detection).

The temporal window duration ∆t directly influences analysis granularity. Shorter win-

dows (∆t ≈ 200–500 ms) provide fine-grained temporal resolution but may yield incom-

plete harmonic information, whereas longer windows (∆t ≈ 1–3 s) capture fuller chord

structures at the expense of temporal precision. At this stage of processing, it is advan-

tageous to keep these buffers as short as possible, since a second buffering layer in the

JavaScript stage later adjusts the effective window size according to user-selected param-

eters such as bar length and half-bar subdivisions. This design ensures that the initial

Python buffer remains lightweight and responsive, while higher-level temporal organiza-

tion is handled at the frontend.

Thus, the buffer capacity smCapacity is dynamically determined through WebSocket

configuration messages from the JavaScript frontend, calculated based on current tempo

(BPM) and time signature. The relationship is expressed as:

smCapacity = f(tempo, time signature,∆t)

Table 2: Temporal Buffer Configuration Parameters

Parameter Range Description
∆t 100–5000 ms Window duration
smCapacity 50–500 events Tempo-adaptive buffer limit
Tempo 40–240 BPM Musical tempo

The system sorts buffered events by timestamp before forwarding them to analysis stages,

transforming potentially out-of-order network arrivals into chronologically ordered pitch

sequences essential for accurate harmonic analysis. Additionally, the backend identifies

bass and soprano voices by determining the lowest and highest pitch values within the

temporal buffer, providing essential voice-leading information for Roman numeral deter-

mination in the frontend analysis layer. Once these temporal structures are finalized, the

backend is prepared to manage communication across OSC and UDP channels, forming

the next stage of processing.

Page 9

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

2.2.3 Communicate via OSC / UDP

Once the MIDI input flow is managed through tempo- and time-signature–adaptive buffers,

the backend treats the prepared external sources as active OSC and UDP communica-

tion channels through which continuous MIDI data streams are received. This subsys-

tem manages all network socket operations, including port binding, packet reception,

and protocol-specific message parsing. The module operates asynchronously using event-

driven programming, ensuring that network I/O operations never block critical processing

tasks. Robust error-handling routines address packet loss, transmission delays, and tem-

porary disconnections. Furthermore, timeout mechanisms detect when MIDI streams

cease, triggering reconnection logic that automatically re-establishes communication with

external sources without requiring manual intervention. With reliable communication es-

tablished, the backend is then positioned to coordinate real-time message exchange with

the frontend through WebSocket protocols.

2.2.4 Coordinate WebSocket Messaging

Before data originating from input sources is transmitted bidirectionally to and from

the frontend, the backend manages the entire WebSocket connection lifecycle, includ-

ing connection establishment, keepalive mechanisms, and disconnection handling. This

coordinator maintains a registry of active frontend connections and implements broad-

cast mechanisms for efficient state distribution. Message-routing logic determines the

appropriate recipients based on client configurations, ensuring correct delivery ordering

for sequential state updates. At this stage, the backend operations are fully prepared to

interface with the second layer of the system, enabling real-time synchronization through

the transport layer.

2.3 Transport Layer (WebSocket)

WebSocket is a full-duplex communication protocol that enables persistent, bidirectional

data exchange between a client and a server over a single, long-lived connection. This

layer manages state broadcasts from backend to frontend and configuration updates from

Page 10

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

frontend to backend, ensuring synchronized operation across distributed system compo-

nents while maintaining low-latency message delivery essential for real-time harmonic

analysis. With backend readiness in place, the transport layer assumes responsibility for

transmitting system state efficiently and reliably.

2.3.1 Broadcast State Updates (Backend → Frontend)

The transport layer implements a unidirectional state broadcast mechanism that contin-

uously transmits backend state information to connected frontend clients through Web-

Socket channels. These broadcasts contain current pitch buffer contents, identified bass

and soprano voices, timing parameters, tempo information, time signature data, and con-

figuration values required for frontend harmonic analysis operations.

Table 3: Transport Layer Message Types

Direction Content Purpose
Frontend → Backend ∆t, tempo, time signature, Runtime parameter

analysis mode configuration
Backend → Frontend Pitch buffers, bass/soprano, State synchronization

tempo, time signature for analysis

These broadcasts ensure that all connected frontend clients receive consistent and timely

system updates. As a complement to these outgoing streams, the transport layer must

also handle user-driven configuration changes arriving from the frontend.

2.3.2 Receive Configuration Changes (Frontend → Backend)

The transport layer also implements a bidirectional channel for configuration messages

flowing from frontend to backend, enabling user interfaces to modify backend parame-

ters during runtime. Configuration messages include adjustments to temporal window

duration ∆t, tempo (BPM), time signature, and analysis mode settings. These mes-

sages travel through WebSocket connections, distinguished by message type identifiers for

proper routing.

The backend validates incoming configuration requests to ensure parameters fall within

acceptable ranges and prevent incompatible setting combinations that could compromise

Page 11

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

system stability. Validation checks confirm that tempo remains within 40–240 BPM and

∆t stays within 100–5000 ms bounds. The subsystem provides acknowledgment messages

back to requesting frontends, confirming successful configuration changes or reporting

validation errors. These validation and acknowledgment steps complete the transport

layer’s responsibility for reliable bidirectional coordination, ensuring that the system can

safely progress to the subsequent processing stage.

2.4 Frontend Analysis Layer

Once input data arrives at the backend and the initial preprocessing steps described above

are completed, the refined musical features are transmitted to the frontend for higher-level

interpretation. The Frontend Analysis Layer processes real-time musical data received

from the backend and transforms it into symbolic harmonic interpretations displayed in

the user interface. Operating asynchronously over WebSocket communication, the fron-

tend continuously updates its internal state structures containing pitch-class sets, bass

and soprano identifications, tempo, meter, and key information. Interval arithmetic con-

verts absolute pitches into normalized interval patterns, which are then matched against

predefined chord templates to determine chord quality and root position. Using this

information, the Roman numeral lookup subsystem assigns functional labels based on

scale degree, chord quality, inversion, and secondary-dominant relationships. Finally, the

rendering engine presents Roman numeral labels and related musical attributes in a re-

sponsive browser interface optimized for clarity and low-latency performance during live

musical interaction.

2.4.1 Receive State Broadcasts

The frontend layer receives continuous state broadcasts from the backend through Web-

Socket connections, establishing the foundation for real-time harmonic analysis. These

broadcasts contain temporally ordered pitch sequences, identified bass and soprano voices,

current tempo (BPM), time signature, temporal window duration ∆t, and system config-

uration parameters. The frontend implements event listeners that parse incoming JSON

Page 12

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

messages and update internal state representations.

Upon receiving each broadcast, the frontend validates message integrity by checking se-

quence numbers to detect potential packet loss or out-of-order delivery. Missing sequences

trigger re-synchronization requests to the backend. The received pitch data populates lo-

cal data structures that subsequent analysis stages consume. While bass and soprano

identifications provide voice-leading context essential for Roman numeral determination,

tempo and time-signature information enable metric-aware analysis, allowing the system

to align harmonic interpretations with musical meter and phrase boundaries.

From this point onward, the system activates its novel analysis pipeline, transforming the

incoming musical data into its final Roman numeral interpretation.

2.4.2 Interval Arithmetic on Pitch Classes

Building directly on the received state broadcasts, the frontend performs interval arith-

metic on received pitch classes to extract harmonic relationships essential for chord iden-

tification. This subsystem, implemented primarily in JavaScript files, converts absolute

pitch values into relative interval structures that characterize chord quality independent

of transposition.

Figure 2: Interval Arithmetic on Pitch Classes: Processing Pipeline

Page 13

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

The first node in Fig. 2 represents the data received from the backend, whose details have

been described above. To summarize the process in the backend, it begins by reducing

MIDI note numbers to pitch classes using modulo-12 arithmetic:

pc = n mod 12

where n represents the MIDI note number (0–127) and pc yields the pitch class (0–11),

with 0 = C, 1 = C♯/D♭, continuing through 11 = B, independent of octave register.

From this point, the system constructs a pitch class set P = {p1, p2, . . . , pk} containing

all unique pitch classes present within the current temporal buffer, where k represents the

cardinality of the set and each element pi ∈ {0, 1, 2, . . . , 11} corresponds to a distinct chro-

matic pitch class. The temporal buffer’s parameters—window duration ∆t and capacity

smCapacity—are dynamically configured through WebSocket messages from the frontend

based on tempo (BPM) and time signature, determining which pitch events contribute to

the set P at any given analytical moment.

To characterize the internal structure of this set, the system calculates intervals between

all pitch class pairs within set P using the formula:

Iij = (pj − pi) mod 12

where pi and pj represent any two pitch classes in the set, and Iij yields the ascending

interval from pi to pj expressed in semitones (0–11). This exhaustive pairwise comparison

generates a complete intervallic profile characterizing the harmonic relationships within

the current pitch collection.

On the basis of these pairwise relationships, the computeIntervals() function in the

program generates an interval vector that quantifies the frequency of each interval class

present in the pitch class set. This vector counts occurrences of interval classes 0 through

6 (unison, minor second, major second, minor third, major third, perfect fourth, and

tritone), providing a compact numerical representation of the set’s intervallic content that

Page 14

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

characterizes chord quality independent of voicing or octave placement. For example, a

C major triad with pitch class set P = {0, 4, 7} (C, E, G) produces an interval vector

indicating one major third (4 semitones), one minor third (3 semitones), and one perfect

fifth (7 semitones).

Subsequently, the normalizeIntervals() function transposes an interval set into a canon-

ical form, enabling comparison against chord templates regardless of the chord’s root po-

sition or transposition level. This comparison matches to an item of a finite set which

represents all combinational possibilities in the Western music system, as explained in

Appendix I. This normalization process rotates the pitch-class set to a standard reference

point—typically aligning the lowest pitch class to 0 or establishing a consistent ordering

criterion. By standardizing interval structures, the system can match harmonically equiv-

alent chords that differ only in their absolute pitch level, facilitating efficient template-

based chord recognition in subsequent processing stages. For example, an E major triad

P = {4, 8, 11} (E, G♯, B) normalizes to P ′ = {0, 4, 7} by transposing down 4 semitones,

yielding the same canonical form as a C major triad and thus enabling recognition of the

major-triad structure independent of root pitch.

In parallel, the system identifies the bass pitch class by determining the lowest pitch value

within the temporal buffer, providing essential information for inversion analysis. The

bass pitch class, denoted as pbass, combined with the normalized chord structure, enables

the system to distinguish between root position and inverted chords. For instance, a C

major triad with pbass = 0 (C) indicates root position, while pbass = 4 (E) indicates first

inversion (C/E), and pbass = 7 (G) indicates second inversion (C/G), critical distinctions

for accurate Roman numeral representation and voice-leading analysis.

Taken together, the output of the interval arithmetic subsystem provides comprehensive

chord information encompassing chord quality (major, minor, diminished, augmented,

seventh chords, etc.) derived from the interval vector analysis, and chord position (root

position, first inversion, second inversion) determined by the bass pitch class identification.

This structured chord information serves as the primary input for the subsequent Roman

Page 15

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

numeral label lookup stage, where the system assigns functional harmonic labels based

on the identified chord quality, inversion, and tonal context established by key signature

and harmonic progression analysis.

2.4.3 Pattern Match Chord Templates

Building on the interval vector representation, the frontend performs pattern matching by

comparing the normalized interval vector against a predefined library of chord templates,

which is the selected number of items from all possible 2048 templates explained in the

appendix. This template library contains canonical interval vectors for standard chord

types including major triads, minor triads, diminished triads, augmented triads, dominant

seventh chords, major seventh chords, minor seventh chords, half-diminished seventh

chords, and fully diminished seventh chords, among other extended harmonies.

The matching algorithm, implemented in the matchChordTemplate() function, computes

similarity scores between the observed interval vector and each template using distance

metrics or exact matching criteria. The system employs a threshold-based approach where

the template with the highest similarity score above a minimum threshold is selected as

the chord identification. When multiple templates yield comparable scores, the algorithm

prioritizes simpler chord structures following principles of parsimony in music-theoretic

analysis.

Importantly, the template matching process accounts for enharmonic equivalence and

voice doubling variations common in keyboard performance. For instance, a C major triad

remains identifiable whether voiced as {0, 4, 7} or with octave doublings as {0, 0, 4, 7, 7},

since the interval vector computation focuses on pitch class content rather than absolute

note counts. Successfully matched templates return chord quality labels (e.g., “major”,

“minor7”, “dim”) that combine with bass pitch class information to form complete chord

symbols ready for Roman numeral assignment based on the established tonal center. With

chord templates matched and chord qualities identified, the system is now prepared to

embed these chords within a tonal framework through Roman numeral labeling.

Page 16

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

2.4.4 Lookup Roman Numeral Labels

While the processes described thus far enable the system to identify chord qualities, the

primary challenge remains determining how these qualities are situated within a tonal

context in order to derive an appropriate Roman numeral analysis—the central goal of

the present work. As shown in Figure 3, the Lookup Roman Numeral Labels subsec-

tion processes the identified chord quality and bass pitch class (determined in previous

sections) by mapping them to functional harmonic designations through root identifica-

tion, tonic comparison, scale-degree calculation, diatonic evaluation, inversion analysis,

and secondary-function detection. These stages collectively yield the system’s complete

Roman numeral annotations.

Figure 3: Lookup Roman Numeral Labels: Processing Pipeline

After the previous stages produce refined musical data, the system begins by determining

the chord root from the normalized pitch-class set obtained through interval-arithmetic

analysis. The chord root represents the fundamental pitch on which the chord is built,

serving as the reference for scale-degree identification and Roman numeral classification.

For chords in root position—where the bass pitch class corresponds directly to the chord

root—the identification is straightforward: proot = pbass. In contrast, inverted chords

require additional evaluation, as the bass pitch class no longer coincides with the root

Page 17

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

and must therefore be inferred from the internal interval structure of the chord.

For triadic structures, the root identification algorithm analyzes interval relationships

within the pitch class set P = {p1, p2, p3}. The system searches for the pitch class that

generates a third-stacked structure when intervals are measured upward. Specifically, it

identifies the pitch class proot such that:

proot + I1 ≡ p2 (mod 12)

proot + I2 ≡ p3 (mod 12)

where I1 ∈ {3, 4} (minor or major third) and I2 ∈ {6, 7, 8} (diminished fifth, perfect fifth,

or augmented fifth), representing the characteristic interval structures of triadic harmony.

For seventh chords with four distinct pitch classes P = {p1, p2, p3, p4}, the algorithm

extends this principle by identifying the pitch class that generates a complete tertian

stack:

proot + I1 ≡ p2 (mod 12)

proot + I2 ≡ p3 (mod 12)

proot + I3 ≡ p4 (mod 12)

where I1, I2 ∈ {3, 4} and I3 ∈ {9, 10, 11} (diminished seventh, minor seventh, or major

seventh).

The findChordRoot() function in script.js implements these algorithms, testing each

pitch class in the set as a potential root candidate and evaluating whether the remaining

pitches form valid tertian intervals above it. When multiple candidates satisfy the tertian

criteria, the system applies heuristic rules prioritizing simpler interpretations and favoring

roots that align with common-practice harmonic progressions within the established tonal

context.

Once the root has been determined, the process advances to the next stage. The system

then obtains the active key signature and tonic pitch class from backend state updates

Page 18

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

delivered over the WebSocket transport layer. This data, maintained within the frontend’s

state management framework, establishes the tonal context required for computing scale

degrees and assigning Roman numerals. The tonic pitch class ptonic ∈ {0, 1, 2, . . . , 11}

functions as the reference for all harmonic function analysis, while the key signature (major

or minor) specifies the underlying diatonic set against which any chromatic deviations are

detected.

After the user selects the key and key quality, the next stage computes the interval between

the identified chord root and the tonic pitch class to determine the chord’s scale-degree

position within the key. This interval is calculated using modulo-12 arithmetic:

Iscale = (proot − ptonic) mod 12

where Iscale represents the number of semitones above the tonic. This value directly maps

to scale degrees: 0 = I, 2 = ii, 4 = iii, 5 = IV, 7 = V, 9 = vi, 11 = vii°, establishing

the foundational Roman numeral designation before quality and inversion symbols are

applied.

At the next stage, which can be followed by arrows in Fig. 3, the program maps the

calculated interval Iscale to its corresponding scale degree position using a lookup table that

associates semitone distances with Roman numeral designations. The mapping follows

standard diatonic scale theory: 0 semitones maps to I (tonic), 2 to ii (supertonic), 4 to

iii (mediant), 5 to IV (subdominant), 7 to V (dominant), 9 to vi (submediant), and 11

to vii° (leading tone). This translation converts the numerical interval calculation into

a music-theoretically meaningful scale degree representation that forms the basis of the

Roman numeral label.

At this step, a decision point emerges. The program evaluates whether the identified chord

belongs to the diatonic collection of the current key by comparing its pitch class content

against the expected scale degrees. A chord is considered diatonic if all its constituent

pitch classes can be found within the major or minor scale defined by the current key

signature, without requiring chromatic alterations. If the chord is diatonic, the system

Page 19

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

proceeds directly to assign Roman numeral case based on chord quality: major chords

receive uppercase numerals (I, IV, V), minor chords receive lowercase numerals (ii, iii,

vi), and diminished chords receive lowercase numerals with degree symbols (vii°). Aug-

mented chords, though rare in diatonic contexts, receive uppercase numerals with plus

signs (III+).

If the chord is non-diatonic, containing one or more chromatic alterations, the system

applies accidental symbols (♯, ♭, ♮) to the Roman numeral to indicate the altered scale

degree. For example, in C major, an A♭ major chord would be notated as ♭VI, indicating

the lowered sixth scale degree. The system compares each pitch class in the chord against

the diatonic collection, determines which scale degrees have been raised or lowered, and

prefixes the appropriate accidental to the Roman numeral.

Then, a second decision point determines whether the chord is in root position or inversion.

If it is not in root position, the program determines inversion status by comparing the

bass pitch class pbass with the identified chord root proot. If pbass = proot, the chord is in

root position and receives no inversion symbol. If the bass matches the chord’s third, the

chord is in first inversion (notated with 6 or 6
3). If the bass matches the fifth, the chord

is in second inversion (notated with 6
4). For seventh chords, third inversion occurs when

the seventh appears in the bass (notated with 4
2 or 2), providing complete figured bass

notation for the harmonic analysis.

If the chord is in root position, the system next determines whether it functions as a sec-

ondary dominant. Rather than relying solely on the chord’s actual resolution, the analy-

sis first checks whether the chord contains dominant-function pitch content—typically a

major triad (optionally with a minor seventh) that includes at least one pitch class lying

outside the home-key collection. When such chromatic alterations are present, the system

evaluates which possible tonal center the four pitch classes most strongly imply, selecting

the candidate key whose dominant-function template best matches the chord’s interval

structure. The relationship between this implied temporary key and the global home

key is then used to assign the appropriate secondary dominant label, expressed in slash

Page 20

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

notation (e.g., V/V or V7/IV). This evaluation is carried out within a temporal window

by the analyzeSecondaryFunction() routine, which assesses the harmonic context to

refine the final annotation.

When secondary dominant function is confirmed, the system applies secondary function

notation using slash syntax that indicates the target chord of the temporary tonicization.

The notation format is [function]/[target], where the function represents the dominant

or leading-tone relationship (V, V7, vii°, vii°7) and the target represents the diatonic

chord being tonicized (ii, iii, IV, V, vi). For example, V/V indicates the dominant of the

dominant, while vii°7/vi represents a fully diminished seventh chord functioning as the

leading-tone chord of the submediant.

If the chord does not function as a secondary dominant, or after secondary function

notation has been applied, the system combines all analytical components into the final

Roman numeral label. This combination assembles the scale degree Roman numeral,

chord quality indicators (M7 for major seventh, ø7 for half-diminished seventh), chromatic

alteration symbols (♯, ♭), figured bass inversion symbols (6, 6
4, 6

5, 4
3, 4

2), and secondary

function notation into a complete, standardized representation.

The final output produces complete harmonic annotations such as “I”, “ii6”, “V6
5/IV”, “♭VI”,

or “vii°7/V”, encoding comprehensive functional harmonic information in compact sym-

bolic form. These annotations are then rendered in the user interface display, synchronized

with the real-time musical performance through the continuous WebSocket state broad-

cast mechanism from the backend processing layer, providing immediate visual feedback

of harmonic analysis results to performers and analysts.

2.4.5 Render Harmonic Analysis UI

To present these analytical results to the user, the frontend rendering subsystem displays

complete harmonic analysis results through a browser-based user interface implemented

in HTML, CSS, and JavaScript. This subsystem, primarily managed in index.html and

styled through associated CSS files, presents Roman numeral labels, chord symbols, pitch

Page 21

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

class information, and temporal context in a synchronized, real-time visualization that

updates continuously as the musical performance progresses.

The user interface organizes information hierarchically across multiple display regions.

The primary analysis region shows the current Roman numeral annotation in large, read-

able typography, ensuring immediate visibility during live performance. Secondary regions

display supporting information including the identified chord quality, bass and soprano

pitch classes, current tempo (BPM), time signature, and temporal window duration ∆t.

Additional interface elements provide access to configuration controls allowing users to

adjust analysis parameters and system settings through frontend-to-backend WebSocket

messages.

The rendering engine, implemented in JavaScript, updates the display asynchronously

upon receiving state broadcasts from the backend. The updateUI() function parses

incoming JSON messages and maps data fields to corresponding DOM elements using

JavaScript DOM manipulation methods. Animation and transition effects provide visual

continuity between harmonic changes, with configurable fade durations and color coding

that distinguishes diatonic harmonies from chromatic alterations.

Table 4: User Interface Display Components

Component Information Displayed
Primary Analysis Region Current Roman numeral label
Chord Quality Display Major, minor, diminished, augmented, seventh
Voice Information Bass pitch class, soprano pitch class
Temporal Context Tempo (BPM), time signature, ∆t
Configuration Panel Parameter adjustment controls
History Timeline Previous harmonic annotations

The interface implements responsive design principles ensuring compatibility across var-

ious display sizes and devices. The rendering system maintains consistent frame rates

through efficient DOM update strategies that minimize reflow and repaint operations,

ensuring smooth visual performance even during rapid harmonic changes or dense poly-

phonic textures that generate frequent analysis updates.

Page 22

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

3 Conclusion

Throughout this work, I presented a comprehensive real-time system for automatic Ro-

man numeral harmonic analysis operating on live MIDI input. Through the integration of

Python-based backend processing, WebSocket communication protocols, and JavaScript-

based frontend analysis, I developed a distributed architecture capable of delivering

expert-level harmonic analysis with latency characteristics suitable for live musical per-

formance.

The system’s three-tier architecture successfully addresses the fundamental challenges of

real-time harmonic analysis. The backend layer efficiently manages MIDI input streams,

maintains tempo-adaptive temporal buffers, and identifies bass and soprano voices essen-

tial for accurate Roman numeral determination. The transport layer provides reliable,

low-latency bidirectional communication enabling dynamic parameter adjustment during

performance. The frontend layer implements sophisticated algorithms for interval arith-

metic, chord template matching, and Roman numeral lookup, producing complete har-

monic annotations including diatonic and chromatic functions, inversions, and secondary

dominants.

Key contributions of this work include the temporal buffering mechanism with dynamic

capacity adjustment based on musical tempo and time signature, the integration of pitch

class set theory with pattern matching algorithms for robust chord identification, and the

comprehensive Roman numeral lookup pipeline that handles complex harmonic phenom-

ena including modal mixture and tonicization. The system’s browser-based user interface

provides immediate visual feedback synchronized with ongoing musical performance, mak-

ing harmonic analysis accessible in real-time pedagogical and performance contexts.

Future research directions include extending the system to support more complex har-

monic vocabularies beyond common-practice tonality, incorporating machine learning ap-

proaches for improved chord recognition in ambiguous contexts, and developing automated

key detection algorithms that adapt to modulation and tonal ambiguity. Additionally, in-

Page 23

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

tegration with multimodal data sources such as EEG signals could enable investigation

of neurological correlates of harmonic perception during real-time analysis, contributing

to music cognition research methodologies.

Page 24

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

Appendix

A Combinatorial Possibilities in 12-Tone Diatonic and

Chromatic Music

One of the crucial components described in this work is the interval-arithmetic subsystem.

At the end of this process, the system produces a numerical vector that functions as a

structural fingerprint of the chord. This vector is then matched against a finite dictio-

nary of predefined interval patterns, enabling the system to determine the appropriate

Roman numeral label. In Western music theory, this finite dictionary corresponds to

the twelve pitch classes and the full set of their possible combinations. When encoded

as ordered pitch-class sets anchored at center 0, these combinations yield 2048 distinct

configurations—the complete lexical space available for harmonic structures in Western

classical music. This section explains the mathematical foundations that support this

analytical approach.

In the context of real-time symbolic harmonic recognition, pitch-class sets serve as the

foundational building blocks for detecting and labeling chordal structures. The com-

plete chromatic collection in Western music consists of 12 pitch classes {0, 1, 2, . . . , 11},

representing the notes from C to B. In computational terms, any musical event within a

temporal window (as defined by smCapacity) can be represented as a subset of these pitch

classes. It is the very first step for the program to store these subsets or combinations in

smCapacity.

Page 25

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

A.1 Derivation of Pitch Class Set Combinations

Let S = {0, 1, 2, . . . , 11} denote the full chromatic set. The number of k-element subsets

that can be chosen from S is defined by the binomial coefficient:

(
12

k

)
=

12!

k!(12− k)!
, for 1 ≤ k ≤ 12 (1)

The total number of non-empty subsets is:

12∑
k=1

(
12

k

)
= 212 − 1 = 4095 (2)

To reduce analytical redundancy and enforce a consistent bass-based orientation, this

system filters only those subsets where the first pitch class is 0 (C). This constraint

emphasizes bass-normalized pitch-class sets and reduces the search space significantly

while retaining representative harmonic structures across all cardinalities.

In this constrained model, we fix 0 as the first element of each subset and select the

remaining k − 1 elements from the remaining 11 pitch classes {1, 2, . . . , 11}. Therefore,

the number of valid k-element subsets starting with 0 is:

(
11

k − 1

)
=

11!

(k − 1)!(11− (k − 1))!
, for 1 ≤ k ≤ 12 (3)

The total number of such subsets across all values of k is:

12∑
k=1

(
11

k − 1

)
=

11∑
j=0

(
11

j

)
= 211 = 2048 (4)

For example:

• k = 2: Combinations starting with 0 include {0, 1}, {0, 2}, . . . , {0, 11} totaling 11

subsets.

• k = 3: Combinations include {0, 1, 2}, {0, 1, 3}, . . . yielding
(
11
2

)
= 55 subsets.

Page 26

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

• k = 4: Combinations include {0, 1, 2, 3}, {0, 1, 2, 4}, . . . yielding
(
11
3

)
= 165 subsets.

• In general, the number of k-subsets starting with 0 is
(

11
k−1

)
.

In the proposed real-time system, combinatorial pitch-class sets are directly used in the

chord recognition pipeline, which includes dyadic, triadic, and tetradic combinations of

pitch class sets.

Thus, this section introduces the foundational combinatorial logic used in the system to

recognize dyadic, triadic, and tetradic pitch-class structures in real time. By systemat-

ically constraining all harmonic evaluations to pitch-class subsets that begin with pitch

class 0 (C), the system reduces the theoretical complexity of the chromatic pitch space

and focuses on musically functional combinations. Each level—dyads (k = 2), triads

(k = 3), and tetrads (k = 4)—is defined by a binomial formulation
(

11
k−1

)
, yielding a

finite and analyzable vocabulary of 11, 55, and 165 structures, respectively. This range

of combinations holds all possible chords which form the basis for interval classification

and chord labeling, and paves the way for Roman numeral analysis in the main text.

The specifics of how each type is identified, labeled, and integrated into the system’s

harmonic grammar are explained in detail in the preceding sections. Before presenting

these dyads, triads, and tetrads, I categorize these 230 all possible combinations in diatonic

music; there are two categories: primary and secondary subsets. These categories allow

us to observe chord distribution in the metric space of compositions, e.g., distribution of

primary and secondary chords on downbeats and upbeats in measures.

References

Benetos, E., Dixon, S., Duan, Z., & Ewert, S. (2019). Automatic music transcription: An

overview. IEEE Signal Processing Magazine, 36 (1), 20–30.

Devaney, J., Arthur, C., Condit-Schultz, N., & Nisula, K. (2015). Theme and variation

encodings with roman numerals (tavern): A new data set for symbolic music anal-

ysis. Proceedings of the 16th International Society for Music Information Retrieval

Conference (ISMIR), 727–734.

Page 27

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

Fricke, L., Gotham, M., Ostermann, F., & Vatolkin, I. (2024). Adaptation and optimiza-

tion of augmentednet for roman numeral analysis applied to audio signals. Artificial

Intelligence in Music, Sound, Art and Design: 13th International Conference, Evo-

MUSART 2024, 14633, 146–157. https://doi.org/10.1007/978-3-031-56992-0_12

Jamshidi, F., Pike, G., Das, A., & Chapman, R. (2024). Machine learning techniques

in automatic music transcription: A systematic survey [Licensed under CC BY

4.0]. Proceedings of the 25th International Society for Music Information Retrieval

Conference (ISMIR), 1–9.

Karystinaios, E., & Widmer, G. (2023). Roman numeral analysis with graph neural net-

works: Onset-wise predictions from note-wise features. Proceedings of the 24th In-

ternational Society for Music Information Retrieval Conference (ISMIR 2023).

https://github.com/manoskary/chordgnn

López, N. N., & Fujinaga, I. (2020). Harmalysis: A language for the annotation of roman

numerals in symbolic music representations. Proceedings of the Music Encoding

Conference (MEC), 83–85.

Marinov, G. (2020). Real-time error correction and performance aid for midi instruments

[BSc Computer Science Dissertation].

Micchi, G., Gotham, M., & Giraud, M. (2020). Not all roads lead to rome: Pitch repre-

sentation and model architecture for automatic harmonic analysis. Transactions

of the International Society for Music Information Retrieval, 3 (1), 42–54. https:

//doi.org/10.5334/tismir.45

Privato, N., Rampado, O., & Novello, A. (2022). A creative tool for the musician combin-

ing lstm and markov chains in max/msp. Artificial Intelligence in Music, Sound,

Art and Design. 11th International Conference, EvoMUSART 2022, 13271, 228–

242. https://doi.org/10.1007/978-3-031-05978-4_15

Shepardson, V., Armitage, J., & Magnusson, T. (2022). Notochord: A flexible probabilistic

model for real-time midi performance. Proceedings of the 3rd Conference on AI

Music Creativity (AIMC).

Page 28

https://doi.org/10.1007/978-3-031-56992-0_12
https://github.com/manoskary/chordgnn
https://doi.org/10.5334/tismir.45
https://doi.org/10.5334/tismir.45
https://doi.org/10.1007/978-3-031-05978-4_15

Oğuzhan Tuğral Automated Annotation of Roman Numeral Harmony

Tymoczko, D., Gotham, M., Cuthbert, M. S., & Ariza, C. (2019). The romantext format:

A flexible and standard method for representing roman numeral analyses. Proceed-

ings of the 20th International Society for Music Information Retrieval Conference

(ISMIR), 123–129.

Page 29

	Introduction
	Background
	Problems

	Automated Annotation of Roman Numeral Harmony
	Input Layer and External Systems
	MIDI Input
	External Systems (OSC / UDP)

	Backend Layer (Python)
	Handle MIDI Input
	Maintain Temporal Pitch Buffers
	Communicate via OSC / UDP
	Coordinate WebSocket Messaging

	Transport Layer (WebSocket)
	Broadcast State Updates (Backend Frontend)
	Receive Configuration Changes (Frontend Backend)

	Frontend Analysis Layer
	Receive State Broadcasts
	Interval Arithmetic on Pitch Classes
	Pattern Match Chord Templates
	Lookup Roman Numeral Labels
	Render Harmonic Analysis UI

	Conclusion
	Appendix
	Combinatorial Possibilities in 12-Tone Diatonic and Chromatic Music
	Derivation of Pitch Class Set Combinations

